Cryptography, Information Theory, and Error-Correction. Aiden A. Bruen

Читать онлайн.
Название Cryptography, Information Theory, and Error-Correction
Автор произведения Aiden A. Bruen
Жанр Зарубежная компьютерная литература
Серия
Издательство Зарубежная компьютерная литература
Год выпуска 0
isbn 9781119582403



Скачать книгу

of , then gives . Note that this attack can be generalized to any small value of .

      28 3.28 First, we check that , and are pairwise relatively prime. They factor as , and , and are Thus, pairwise relatively prime. Now, as described in the previous solution is 74 088, and so the answer is . [See Solution 3.28.]

      29 3.29 By hypothesis, Bob knows the factors of , i.e. he knows , where .In order to decrypt a cipher sent to Alice, i.e. to find the message sent to Alice, Bob merely has to find the inverse of modulo , i.e. to find such that . Then Bob raises to the power and gets the remainder of upon division by to find .

      30 3.30 Since is relatively prime to , there are integers , so that . This follows from a generalization to Fermat's Theorem. Using this fact, we have . Now , by Fermat's Theorem. Then . To see this, we are calculating(3.13) This is equal to(3.14) Now,Thus, is divisible by . Similarly, it is divisible by so that is divisible by . From (3.14), we get . Then, given that , we conclude that . Thus, if is small, RSA can be attacked. Note that in using Fermat's Theorem, we have supposed that and , but, we in fact can only be guaranteed that one of or is true, although it is possible that both are true. However, the result still holds in this case, and the proof is similar.

      31 3.31 For , , so .

      32 3.32 69.

      33 3.33 .

      1 1 Recall that a number is primeif it has no factors save itself and 1. So 11 is prime, but is not since 2 and 3 divide 6, i.e. they are factors of 6.

      2 2 Fermat's theorem says that when is prime and is not a multiple of .

      3 3 Testing for primality means to see whether the number in question is a prime number.

      4 4 is Euler's Phi Function see Chapter 19 for further details.

      Конец ознакомительного фрагмента.

      Текст предоставлен ООО «ЛитРес».

      Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.

      Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.

/9j/4AAQSkZJRgABAQEBLAEsAAD/7SkMUGhvdG9zaG9wIDMuMAA4QklNBAQAAAAAAAccAgAAAgAA ADhCSU0EJQAAAAAAEOjxXPMvwRihontnrcVk1bo4QklNBDoAAAAAAOUAAAAQAAAAAQAAAAAAC3By aW50T3V0cHV0AAAABQAAAABQc3RTYm9vbAEAAAAASW50ZWVudW0AAAAASW50ZQAAAABDbHJtAAAA D3ByaW50U2l4dGVlbkJpdGJvb2wAAAAAC3ByaW50ZXJOYW1lVEVYVAAAAAEAAAAAAA9wcmludFBy b29mU2V0dXBPYmpjAAAADABQAHIAbwBvAGYAIABTAGUAdAB1AHAAAAAAAApwcm9vZlNldHVwAAAA AQAAAABCbHRuZW51bQAAAAxidWlsdGluUHJvb2YAAAAJcHJvb2ZDTVlLADhCSU0EOwAAAAACLQAA ABAAAAABAAAAAAAScHJpbnRPdXRwdXRPcHRpb25zAAAAFwAAAABDcHRuYm9vbAAAAAAAQ2xicmJv b2wAAAAAAFJnc01ib29sAAAAAABDcm5DYm9vbAAAAAAAQ250Q2Jvb2wAAAAAAExibHNib29sAAAA AABOZ3R2Ym9vbAAAAAAARW1sRGJvb2wAAAAAAEludHJib29sAAAAAABCY2tnT2JqYwAAAAEAAAAA AABSR0JDAAAAAwAAAABSZCAgZG91YkBv4AAAAAAAAAAAAEdybiBkb3ViQG/gAAAAAAAAAAAAQmwg IGRvdWJAb+AAAAAAAAAAAABCcmRUVW50RiNSbHQAAAAAAAAAAAAAAABCbGQgVW50RiNSbHQAAAAA AAAAAAAAAABSc2x0VW50RiNQeGxAcsAAAAAAAAAAAAp2ZWN0b3JEYXRhYm9vbAEAAAAAUGdQc2Vu dW0AAAAAUGdQcwAAAABQZ1BDAAAAAExlZnRVbnRGI1JsdAAAAAAAAAAAAAAAAFRvcCBVbnRGI1Js dAAAAAAAAAAAAAAAAFNjbCBVbnRGI1ByY0BZAAAAAAAAAAAAEGNyb3BXaGVuUHJpbnRpbmdib29s AAAAAA5jcm9wUmVjdEJvdHRvbWxvbmcAAAAAAAAADGNyb3BSZWN0TGVmdGxvbmcAAAAAAAAADWNy b3BSZWN0UmlnaHRsb25nAAAAAAAAAAtjcm9wUmVjdFRvcGxvbmcAAAAAADhCSU0D7QAAAAAAEAEs AAAAAQACASwAAAABAAI4QklNBCYAAAAAAA4AAAAAAAAAAAAAP4AAADhCSU0EDQAAAAAABAAAAFo4 QklNBBkAAAAAAAQAAAAeOEJJTQPzAAAAAAAJAAAAAAAAAAABADhCSU0nEAAAAAAACgABAAAAAAAA AAI4QklNA/UAAAAAAEgAL2ZmAAEAbGZmAAYAAAAAAAEAL2ZmAAEAoZmaAAYAAAAAAAEAMgAAAAEA WgAAAAYAAAAAAAEANQAAAAEALQAAAAYAAAAAAAE4QklNA/gAAAAAAHAAAP////////////////// //////////8D6AAAAAD/////////////////////////////A+gAAAAA//////////////////// /////////wPoAAAAAP////////////////////////////8D6AAAOEJJTQQIAAAAAAAQAAAAAQAA AkAAAAJAAAAAADhCSU0EHgAAAAAABAAAAAA4QklNBBoAAAAAA08AAAAGAAAAAAAAAAAAAAwDAAAI fwAAAA0AOQA3ADgAMQAxADEAOQA1ADgAMgA0ADIANwAAAAEAAAAAAAAAAAAAAAAAAAAAAAAAAQAA AAAAAAAAAAAIfwAADAMAAAAAAAAAAAAAAAAAAAAAAQAAAAAAAAAAAAAAAAAAAAAAAAAQAAAAAQAA AAAAAG51bGwAAAACAAAABmJvdW5kc09iamMAAAABAAAAAAAAUmN0MQAAAAQAAAAAVG9wIGxvbmcA AAAAAAAAAExlZnRsb25nAAAAAAAAAABCdG9tbG9uZwAADAMAAAAAUmdodGxvbmcAAAh/AAAABnNs aWNlc1ZsTHMAAAABT2JqYwAAAAEAAAAAAAVzbGljZQAAABIAAAAHc2xpY2VJRGxvbmcAAAAAAAAA B2dyb3VwSURsb25nAAAAAAAAAAZvcmlnaW5lbnVtAAAADEVTbGljZU9yaWdpbgAAAA1hdXRvR2Vu ZXJhdGVkAAAAAFR5cGVlbnVtAAAACkVTbGljZVR5cGUAAAAASW1nIAAAAAZib3VuZHNPYmpjAAAA AQAAAAAAAFJjdDEAAAAEAAAAAFRvcCBsb25nAAAAAAAAAABMZWZ0bG9uZwAAAAAAAAAAQnRvbW