Название | Planet Formation and Panspermia |
---|---|
Автор произведения | Группа авторов |
Жанр | Физика |
Серия | |
Издательство | Физика |
Год выпуска | 0 |
isbn | 9781119640936 |
[4.6] Batygin, K., Adams, F.C., Batygin, Y.K., Petigura, E.A., Dynamics of planetary systems Within star clusters: Aspects of the solar system’s early evolution. Astrophys. J., 159, 3, #101, 2020.
[4.7] Chen, H., Litho-panspermia at the center of spiral galaxies, in: Planet formation and panspermia: New Prospects for the Movement of Life through Space [PNSP, Volume in the series Astrobiology Perspectives on Life of the Universe], R. Gordon and J. Seckbach (Series Eds.), B. Vukotić, J. Seckbach, R. Gordon (Eds.), Wiley-Scrivener, Beverly, Massachusetts, USA, 2021.
[4.8] Ćirković, M.M., Boundaries of the habitable zone: Unifying dynamics, astrophysics, and astrobiology, in: Dynamics of Populations of Planetary Systems, Proceedings of IAU Colloquium #197, Z. Knezevic, A. Milani (Eds.) 197, 113–118, Cambridge University Press, UK, 2005.
[4.9] Davies, M.B., Adams, F.C., Armitage, P., Chambers, J., Ford, E., Morbidelli, A., Raymond, S.N., Veras, D., The long-term dynamical evolution of planetary systems, in: Protostars and Planets VI, H. Beuther, R.S. Klessen, C.P. Dullemond, T. Henning (Eds.), pp. 787–809, University of Arizona Press, Tucson, Arizona, USA, 2014.
[4.10] Davies, P.C.W., How bio-friendly is the universe? Int. J. Astrobiology, 2, 2, 115–120, 2003.
[4.11] Đošović, V., Novaković, B., Vukotić, B., Ćirković, M.M., Water transport throughout the TRAPPIST-1 system: the role of planetesimals. Mon. Notices R. Astron. Soc., 499, 4, 4626–4637, 2020.
[4.12] Durand-Manterola, H.J., Free-Floating planets: A viable option for panspermia. arxiv:1010.2735, 2010.
[4.13] Forgan, D., Dayal, P., Cockell, C.S., Libeskind, N., Evaluating galactic habitability using high-resolution cosmological simulations of galaxy formation. Int. J. Astrobiology, 16, 1, 60–73, 2017.
[4.14] Fregeau, J.M., Cheung, P., Portegies Zwart, S., Rasio, F.A., Stellar collisions during binary-binary and binary-single star interactions. Mon. Notices R. Astron. Soc., 352, 1, 1–19, 2004.
[4.15] Gonzalez, G., Brownlee, D., Ward, P., The Galactic Habitable Zone: Galactic chemical evolution. Icarus, 152, 1, 185–200, 2001.
[4.16] Gordon, R. and Hoover, R.B., Could there have been a single origin of life in a Big Bang universe? R.B. Hoover, G.V. Levin, A.Y. Rozanov, P.C.W. Davies (Eds.), Proc. SPIE, 6694, #669404, 2007.
[4.17] Guzik, P., Drahus, M., Rusek, K., Waniak, W., Cannizzaro, G., PastorMarazuela, I., Initial characterization of interstellar comet 2I/Borisov. Nat. Astron., 4, 53–57, 2020, https://www.nature.com/articles/s41550-019-0931-8.
[4.18] Helman, D.S., Galactic distribution of chirality sources of organic molecules. Acta Astronaut., 151, 595–602, 2018.
[4.19] Kaib, N.A., Galactic effects on habitability, in: Handbook of Exoplanets, H. D. and J. B. (Eds.), pp. 59–77, Springer, Cham, Switzerland, 2018.
[4.20] Laughlin, G. and Adams, F.C., The frozen Earth: Binary scattering events and the fate of the Solar System. Icarus, 145, 2, 614–627, 2000.
[4.21] Lee, C.H., Early Observations of the Interstellar Comet 2I/Borisov. Geosciences, 9, 12, #519, 2019.
[4.22] Li, D.H., Mustill, A.J., Davies, M.B., Fly-by encounters between two planetary systems I: Solar system analogues. Mon. Notices R. Astron. Soc., 488, 1, 1366–1376, 2019.
[4.23] Li, G.J. and Adams, F.C., Cross-sections for planetary systems interacting with passing stars and binaries [Correction: (2016) 463(1), 393]. Mon. Notices R. Astron. Soc., 448, 1, 344–363, 2015.
[4.24] Lingam, M., Analytical approaches to modelling panspermia beyond the mean-field paradigm. Mon. Notices R. Astron. Soc., 455, 3, 2792–2803, 2016.
[4.25] Mason, P.A. and Biermann, P.L., Chapter 5: Astrophysical and Cosmological Constraints on Life, in: Habitability of the Universe Before Earth [In Series: Astrobiology: Exploring Life on Earth and Beyond], P. H. Rampelotto, J. Seckbach and R. Gordon (Eds.), R. Gordon, A.A. Sharov (Eds.), pp. 89–126, Elsevier B.V., Amsterdam, 2018.
[4.26] Meech, K.J., Weryk, R., Micheli, M., Kleyna, J.T., Hainaut, O.R., Jedicke, R., Wainscoat, R.J., Chambers, K.C., Keane, J.V., Petric, A., Denneau, L., Magnier, E., Berger, T., Huber, M.E., Flewelling, H., Waters, C., SchunovaLilly, E., Chastel, S., A brief visit from a red and extremely elongated interstellar asteroid. Nature, 552, 7685, 378–381, 2017.
[4.27] Stern, S.A. and Weissman, P.R., Rapid collisional evolution of comets during the formation of the Oort cloud. Nature, 409, 6820, 589–591, 2001.
[4.28] Stojković, N., Vukotić, B., Martinović, N., Ćirković, M., Micic, M., Galactic habitability re-examined: Indications of bimodality. Mon. Notices R. Astron. Soc., 490, 408–416, 2019.
[4.29] Strigari, L.E., Barnabè, M., Marshall, P.J., Blandford, R.D., Nomads of the Galaxy. Mon. Notices R. Astron. Soc., 423, 2, 1856–1865, 2012.
[4.30] Tielens, A.G.G.M., The molecular universe, in: Molecular Universe, J. Cernicharo and R. Bachiller (Eds.), pp. 3–18, Cambridge Univ Press, Cambridge, 2011.
[4.31] Vreeland, R.H., Rosenzweig, W.D., Powers, D.W., Isolation of a 250 million-year-old halotolerant bacterium from a primary salt crystal. Nature, 407, 6806, 897–900, 2000.
[4.32] Wada, K., Tsukamoto, Y., Kokubo, E., Planet formation around supermassive black holes in the active galactic nuclei. Astrophys. J., 886, 107, 2019.
[4.33] Wickramasinghe, N.C., Wickramasinghe, D.T., Tout, C.A., Lattanzio, J.C., Steele, E.J., Cosmic biology in perspective. Astrophys. Space Sci., 364, 11, #205, 2019.
1 *Corresponding author: [email protected]
2 †Corresponding author: [email protected]
Конец ознакомительного фрагмента.
Текст предоставлен ООО «ЛитРес».
Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.
Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.