Magma Redox Geochemistry. Группа авторов

Читать онлайн.
Название Magma Redox Geochemistry
Автор произведения Группа авторов
Жанр Физика
Серия
Издательство Физика
Год выпуска 0
isbn 9781119473244



Скачать книгу

J. (2014). Experimental constraints on dacite pre‐eruptive magma storage conditions beneath Uturuncu Volcano. Journal of Petrology, 55(4), 749–767. doi: 10.1093/petrology/egu005

      147 Mungall, J. E. (2002). Roasting the mantle: Slab melting and the genesis of major Au and Au‐rich Cu deposits. Geology, 30(10), 915–918.

      148 Myers, C. E., & Eugster, H. P. (1983). The system Fe‐Si‐O: Oxygen buffer calibrations to 1500K. Contributions to Mineralogy and Petrology, 82, 75–90.

      149 Mysen, B. O. (2006). Redox equilibria of iron and silicate melt structure: Implications for olivine/melt element partitioning. Geochimica et Cosmochimica Acta, 70(12), 3121–3138. doi: 10.1016/j.gca.2006.03.014

      150 Mysen, B. O., Kumamoto, K., Cody, G. D., & Fogel, M. L. (2011). Solubility and solution mechanisms of C–O–H volatiles in silicate melt with variable redox conditions and melt composition at upper mantle temperatures and pressures. Geochimica et Cosmochimica Acta, 75, 6183–6199. doi: 10.1016/j.gca.2011.07.035

      151 Nebel, O., Sossi, P. A., Bénard, A., Wille, M., Vroon, P. Z., & Arculus, R. J. (2015). Redox‐variability and controls in subduction zones from an iron‐isotope perspective. Earth and Planetary Science Letters, 432, 142–151. doi: 10.1016/j.epsl.2015.09.036

      152 Nell, J., & Wood, B. J. (1991). High‐temperature electrical measurements and thermodynamic properties of Fe3O4‐FeCr2O4‐MgCr2O4‐FeAl2O4 spinels. American Mineralogist, 76(3–4), 405–426.

      153 Neumann, E.‐R. (1991). Ultramafic and mafic xenoliths from Hierro, Canary Islands: evidence for melt infiltration in the upper mantle. Contributions to Mineralogy and Petrology, 106(2), 236–252.

      154 Neumann, E. R., Wulff‐Pedersen, E., Pearson, N. J., & Spencer, E. A. (2002). Mantle xenoliths from Tenerife (Canary Islands): evidence for reactions between mantle peridotites and silicic carbonatite melts inducing Ca metasomatism. Journal of Petrology, 43(5), 825–857.

      155 Neumann, E. R., Wulff‐Pedersen, E., Johnsen, K., Andersen, T., & Krogh, E. (1995). Petrogenesis of spinel harzburgite and dunite suite xenoliths from Lanzarote, eastern Canary Islands: implications for the upper mantle. Lithos, 35(1–2), 83–107.

      156 Newcombe, M., Brett, A., Beckett, J., Baker, M., Newman, S., Guan, Y., et al. (2017). Solubility of water in lunar basalt at low PH2O. Geochimica et Cosmochimica Acta, 200, 330–352.

      157 Nicklas, R. W., Puchtel, I. S., Ash, R. D., Piccoli, P. M., Hanski, E., Nisbet, E. G., et al. (2019). Secular mantle oxidation across the Archean‐Proterozoic boundary: Evidence from V partitioning in komatiites and picrites. Geochimica et Cosmochimica Acta, 250, 49–75. doi: 10.1016/j.gca.2019.01.037

      158 Nicolich, R., Laigle, M., Hirn, A., Cernobori, L., & Gallart, J. (2000). Crustal structure of the Ionian margin of Sicily: Etna Volcano in the Fram of regional evolution. Tectonophysics, 329, 121–139.

      159 O’Neill, H. S., & Pownceby, M. I. (1993). Thermodynamic data from redox reactions at high temperatures. 1. An experimental and theoretical assessment of the electrochemical method using stabilized zirconia electrolytes, with revised values for the Fe‐ FeO, Co‐CoO, Ni‐NiO and Cu‐Cu2O oxygen buffers, and new data for the W‐WO2 buffer. Contributions to Mineralogy and Petrology, 114(3), 296–314.

      160 O’Neill, H. S. C., & Wall, V. (1987). The olivine–orthopyroxene–spinel oxygen geobarometer, the nickel precipitation curve, and the oxygen fugacity of the Earth’s upper mantle. Journal of Petrology, 28(6), 1169–1191.

      161 O’Neill, H. S. C., Berry, A. J., & Mallmann, G. (2018). The oxidation state of iron in Mid‐Ocean Ridge Basaltic (MORB) glasses: Implications for their petrogenesis and oxygen fugacities. Earth and Planetary Science Letters, 504, 152–162. doi: 10.1016/j.epsl.2018.10.002

      162 O’Neill, H. S. C. (1987). Quartz‐fayalite‐rion and quartz‐fayalite‐magnetite equilibria and the free energy of formation of fayalite (Fe2SiO4) and magnetite (Fe3O4). American Mineralogist, 72, 67–75.

      163 Osborn, E. F. (1959). Role of oxygen pressure in the crystallization and differentiation of basaltic magma. American Journal of Science, 257(9), 609–647.

      164 Parkinson, I. J., & Pearce, J. A. (1998). Peridotites from the Izu–Bonin–Mariana forearc (ODP Leg 125): evidence for mantle melting and melt–mantle interaction in a supra‐subduction zone setting. Journal of Petrology, 39(9), 1577–1618.

      165 Parkinson, I. J., & Arculus, R. J. (1999). The redox state of subduction zones: insights from arc‐peridotites. Chemical Geology, 160(4), 409–423.

      166 Parkinson, I. J., Arculus, R. J., & Eggins, S. M. (2003). Peridotite xenoliths from Grenada, Lesser Antilles Island Arc. Contributions to Mineralogy and Petrology, 146(2), 241–262. doi: 10.1007/s00410‐003‐0500‐z

      167 Partzsch, G. M., Lattard, D., & McCammon, C. (2004). Mössbauer spectroscopic determination of Fe3+/Fe2+ in synthetic basaltic glass: a test of empirical fO2 equations under superliquidus and subliquidus conditions. Contributions to Mineralogy and Petrology, 147(5), 565–580. doi: 10.1007/s00410‐004‐0571‐5

      168 Pearce, J. A., Barker, P. F., Edwards, S. J., Parkinson, I. J., & Leat, P. T. (2000). Geochemistry and tectonic significance of peridotites from the South Sandwich arc‐basin system, South Atlantic. Contributions to Mineralogy and Petrology, 139, 36–53.

      169 Plank, T., & Langmuir, C. H. (1988). An evaluation of the global variations in the major element chemistry of arc basalts. Earth and Planetary Science Letters, 90(4), 349–370.

      170 Plank, T., Kelley, K. A., Zimmer, M. M., Hauri, E. H., & Wallace, P. J. (2013). Why do mafic arc magmas contain 4 wt% water on average? Earth and Planetary Science Letters, 364, 168–179. doi: 10.1016/j.epsl.2012.11.044

      171 Portnyagin, M., Hoernle, K., Storm, S., Mironov, N., van den Bogaard, C., & Botcharnikov, R. (2012). H2O‐rich melt inclusions in fayalitic olivine from Hekla volcano: Implications for phase relationships in silicic systems and driving forces of explosive volcanism on Iceland. Earth and Planetary Science Letters, 357–358(0), 337–346. doi: 10.1016/j.epsl.2012.09.047

      172 Righter, K., Danielson, L. R., Pando, K., Morris, R. V., Graff, T. G., Agresti, D. G., et al. (2013). Redox systematics of martian magmas with implications for magnetite stability. American Mineralogist, 98(4), 616–628.

      173 Rowe, M. C., Kent, A. J. R., & Nielsen, R. L. (2007). Determination of sulfur speciation and oxidation state of olivine hosted melt inclusions. Chemical Geology, 236(3–4), 303–322.

      174 Rutherford, M. J., & Devine, J. D. (1996). Preeruption pressure–temperature conditions and volatiles in the 1991 dacitic magma of Mount Pinatubo. In: Punongbayan, R., & Newhall, C. G. (eds.) Fire and Mud: Eruptions and Lahars of Mount Pinatubo, Phillipines. University of Washington Press. 751–766.

      175 Ryabchikov, J. D., Ntaflos, T., Kurat, G., & Kogarko, L. N. (1995). Glass‐bearing xenoliths from Cape Verde: evidence for a hot rising mantle jet. Mineralogy and Petrology, 55(4), 217–237.

      176 Sack, R. O., & Ghiorso, M. S. (1991a). Chromian spinels as petrogenetic indicators: Thermo dynamics and petrological applications. American Mineralogist, 76, 827–847.

      177 Sack, R. O., & Ghiorso, M. S. (1991b), An internally consistent model for the thermodynamic properties of Fe−Mg‐titanomagnetite‐aluminate spinels. Contributions to Mineralogy and Petrology, 106(4), 474–505.

      178 Saiga, A., Matsumoto, S., Uehira, K., Matsushima, T., & Shimizu, H. (2010). Velocity structure in the crust beneath the Kyushu area. Earth Planets and Space, 62(5), 449–462. doi: 10.5047/eps.2010.02.003

      179 Sen, G. (1987). Xenoliths associated with the Hawaiian Hot Spot. Mantle Xenoliths, 359–375.

      180 Sen, G. (1988). Petrogenesis of spinel lherzolite and pyroxenite suite xenoliths from the Koolau shield, Oahu, Hawaii: implications for petrology of the post‐eruptive lithosphere beneath Oahu. Contributions to Mineralogy and Petrology, 100(1), 61–91.

      181 Sen, G., & Presnall, D. C. (1986). Petrogenesis of dunite xenoliths