Magma Redox Geochemistry. Группа авторов

Читать онлайн.
Название Magma Redox Geochemistry
Автор произведения Группа авторов
Жанр Физика
Серия
Издательство Физика
Год выпуска 0
isbn 9781119473244



Скачать книгу

W., & Snow, R. (1955). The orthosilicate‐iron oxide portion of the system CaO‐“FeO”‐SiO2. Journal of the American Ceramic Society, 38(8), 264–272.

      2 Anderson, A. T., & Wright, T. L. (1972). Phenocrysts and glass inclusions and their bearing on oxidation and mixing of basaltic magmas, Kilauea Volcano, Hawaii. American Mineralogist, 57(1–2), 188–216.

      3 Andreani, M., Munoz, M., Marcaillou, C., & Delacour, A. (2013). u‐XANES study of iron redox state in serpentine during oceanic serpentinization. Lithos, 178, 70–83. doi: 10.1016/j.lithos.2013.04.008

      4 Arce, J. L., Gardner, J. E., & Macias, J. L. (2013). Pre‐eruptive conditions of dacitic magma erupted during the 21.7 ka Plinian event at Nevado de Toluca volcano, Central Mexico. Journal of Volcanology and Geothermic Research, 249, 49–65. doi: 10.1016/j.jvolgeores.2012.09.012

      5 Bacon, C. R., & Hirschmann, M. M. (1988). Mg/Mn Partitioning as a Test for Equilibrium between Coexisting Fe‐Ti Oxides. American Mineralogist, 73(1–2), 57–61.

      6 Baggerman, T. D., & DeBari, S. M. (2011). The generation of a diverse suite of Late Pleistocene and Holocene basalt through dacite lavas from the northern Cascade arc at Mount Baker, Washington. Contributions to Mineralogy and Petrology, 161(1), 75–99. doi: 10.1007/s00410‐010‐0522‐2

      7 Bali, E., Keppler, H., & Audetat, A. (2012). The mobility of W and Mo in subduction zone fluids and the Mo–W–Th–U systematics of island arc magmas. Earth and Planetary Science Letters, 351–352, 195–207. doi: 10.1016/j.epsl.2012.07.032

      8 Ballhaus, C. (1993). Redox States of Lithospheric and Asthenospheric Upper‐Mantle, Contributions to Mineralogy and Petrology, 114(3), 331–348.

      9 Ballhaus, C., Berry, R. F., & Green, D. H. (1991). High‐pressure experimental calibration of the olivine‐ortho‐pyroxene‐spinel oxygen geobarometer ‐ implications for the oxidation‐state of the upper mantle. Contributions to Mineralogy and Petrology, 107(1), 27–40.

      10 Basaltic Volcanism Study Project. (1981). Basaltic volcanism of the terrestrial planets, New York: Pergamon Press Inc. 1286 pp.

      11 Behn, M. D., & Grove, T. L. (2015). Melting systematics in mid‐ocean ridge basalts: Application of a plagioclase‐spinel melting model to global variations in major element chemistry and crustal thickness. Journal of Geophysical Research: Solid Earth, 120(7), 4863–4886.

      12 Beier, C., Haase, K. M., & Hansteen, T. H. (2006). Magma evolution of the Sete Cidades volcano, Sao Miguel, Azores. Journal of Petrology, 47(7), 1375–1411. doi: 10.1093/petrology/egl014

      13 Benard, A., Klimm, K., Woodland, A. B., Arculus, R. J., Wilke, M., Botcharnikov, R. E., et al. (2018). Oxidising agents in sub‐arc mantle melts link slab devolatilisation and arc magmas. Nature Communications, 9. doi: 10.1038/s41467‐018‐05804‐2.

      14 Bénard, A., Woodland, A. B., Arculus, R. J., Nebel, O., & McAlpine, S. R. B. (2018). Variation in sub‐arc mantle oxygen fugacity during partial melting recorded in refractory peridotite xenoliths from the West Bismarck Arc. Chemical Geology, 486, 16–30. doi: 10.1016/j.chemgeo.2018.03.004

      15 Berry, A. J., Stewart, G. A., O'Neill, H. S. C., Mallmann, G., & Mosselmans, J. F. W. (2018). A re‐assessment of the oxidation state of iron in MORB glasses. Earth and Planetary Science Letters, 483, 114–123. doi: https://doi.org/10.1016/j.epsl.2017.11.032

      16 Bezos, A., Guivel, G., La, C., Fougeroux, T., & Humler, E. (2021). Unraveling the confusion over the iron oxidation state in MORB glasses. Geochimica et Cosmochimica Acta, 293, 28–39. doi: https://doi.org/10.1016/j.gca.2020.10.004

      17 Bezos, A., & Humler, E. (2005). The Fe3+/Sigma Fe ratios of MORB glasses and their implications for mantle melting. Geochimica et Cosmochimica Acta, 69(3), 711–725.

      18 Birner, S. K., Cottrell, E., Warren, J. M., Kelley, K. A., & Davis, F. A. (2018). Peridotites and basalts reveal broad congruence between two independent records of mantle fO2 despite local redox heterogeneity. Earth and Planetary Science Letters, 494, 172–189.

      19 Birner, S. K., Warren, J. M., Cottrell, E., Davis, F. A., Kelley, K. A., & Falloon, T. J. (2017). Forearc peridotites from Tonga record heterogeneous oxidation of the mantle following subduction initiation. Journal of Petrology, 58(9), 1755–1780.

      20 Bonadiman, C., Beccaluva, L., Coltorti, M., & Siena, F. (2005). Kimberlite‐like metasomatism and ‘garnet signature’in spinel‐peridotite xenoliths from Sal, Cape Verde Archipelago: relics of a subcontinental mantle domain within the Atlantic oceanic lithosphere? Journal of Petrology, 46(12), 2465–2493.

      21 Bonnin‐Mosbah, M., Simionovici, A. S., Metrich, N., Duraud, J. P., Massare, D., & Dillmann, P. (2001). Iron oxidation states in silicate glass fragments and glass inclusions with a XANES micro‐probe. Journal of Non‐Crystalline Solids, 288(1–3), 103–113.

      22 Borisov, A., Behrens, H., & Holtz, F. (2018). Ferric/ferrous ratio in silicate melts: a new model for 1 atm data with special emphasis on the effects of melt composition. Contributions to Mineralogy and Petrology, 173(12), doi: 10.1007/s00410‐018‐1524‐8

      23 Bowen, N. L., & Schairer, J. F. (1932). The System, FeO‐SiO2, American Journal of Science, 24(141), 177–213.

      24 Brandon, A. D., & Draper, D. S. (1996). Constraints on the origin of the oxidation state of mantle overlying subduction zones: An example from Simcoe, Washington, USA. Geochimica et Cosmochimica Acta, 60(10), 1739–1749.

      25 Brounce, M., Kelley, K., & Cottrell, E. (2014). Variations in Fe3+/∑ Fe of Mariana arc basalts and mantle wedge fO2. Journal of Petrology, 55(12), 2513–2536.

      26 Brounce, M., Reagan, M., Kelley, K. A., Cottrell, E., Shimizu, K., & Almeev, R. (2021). Co‐variation of slab tracers, volatiles, and oxidation during subduction initiation. Geochemistry, Geophysics, Geosystems. doi: https://doi.org/10.1029/2021GC009823

      27 Brounce, M., Stolper, E., & Eiler, J. (2017). Redox variations in Mauna Kea lavas, the oxygen fugacity of the Hawaiian plume, and the role of volcanic gases in Earth's oxygenation. Proceedings of the National Academy of Sciences of the United States of America, 114(34), 8997–9002. doi: https://10.1073/pnas.1619527114

      28 Brounce, M., Cottrell, E., & Kelley, K. A. (2019). The redox budget of the Mariana subduction zone. Earth and Planetary Science Letters, 528. doi: Doi.org/10.1016/j.epsl.2019.115859

      29 Brounce, M., Kelley, K. A., Cottrell, E., & Reagan, M. K. (2015). Temporal evolution of mantle wedge oxygen fugacity during subduction initiation. Geology, 43(9), 775–778. doi: 10.1130/G36742.1

      30 Browne, B., Izbekov, P., Eichelberger, J., & Churikova, T. (2010). Pre‐eruptive storage conditions of the Holocene dacite erupted from Kizimen Volcano, Kamchatka. International Geology Review, 52(1), 95–110. doi: 10.1080/00206810903332413

      31 Bryndzia, L. T., & Wood, B. J. (1990). Oxygen thermobarometry of abyssal spinel peridotites ‐ The redox state and C‐O‐H volatile composition of the Earth's sub‐oceanic upper mantle. American Journal of Science, 290(10), 1093–1116.

      32 Bucholz, C. E., & Kelemen, P. B. (2019). Oxygen fugacity at the base of the Talkeetna arc, Alaska. Contributions to Mineralogy and Petrology, 174(10). doi: 10.1007/s00410‐019‐1609‐z

      33 Buddington, A., & Lindsley, D. (1964). Iron‐titanium oxide minerals and synthetic equivalents. Journal of Petrology, 5(2), 310–357.

      34 Burgisser, A., Alletti, M., & Scaillet, B. (2015). Simulating the behavior of volatiles belonging to the C–O–H–S system in silicate melts under magmatic conditions with the software D‐Compress. Computers & Geosciences, 79, 1–14. doi: 10.1016/j.cageo.2015.03.002

      35 Calvert, A. J., Klempere, S. L., Takahashi, N., & Kerr, B. C. (2008). Three‐dimensional crustal structure of the Mariana island arc from seismic tomography.