Magma Redox Geochemistry. Группа авторов

Читать онлайн.
Название Magma Redox Geochemistry
Автор произведения Группа авторов
Жанр Физика
Серия
Издательство Физика
Год выпуска 0
isbn 9781119473244



Скачать книгу

alt="equation"/>

      which results from acid–base exchanges of the type:

      (1.31)equation

      (1.32)equation

      coupled to half‐reaction 1.6.

      (1.33)equation

      The lower stability limit of the solvent can be given by either the reduction of alkaline cation in the corresponding metal:

      whose potential is independent of pO2–, or the reduction of CO32– and SO42– anions given by:

      (1.35)equation

Schematic illustration of log fO2 - Ph diagrams for 290 degrees Celsius (left panel) and 145 degrees Celsius (right panel) at saturated vapor pressure, showing predominance fields for aqueous sulfur species (dashed lines), stability fields for Fe–O–S minerals and bornite–chalcopyrite (solid grey lines).

      Modified from Raymond et al. (2005).

      (1.36)equation

      and to which the following E‐pO2– relationships correspond (CO32– and SO42– anions having unitary activity):

      (1.37)equation

      (1.38)equation

      Figure 1.3 shows the results on carbonate and sulfate melts (modified from Trémillon, 1974, and references therein). The utilizable regions appear as quadrilaterals on the E‐pO2 graph. If in sulfates, the region is a parallelogram similar to the E‐pH region in aqueous solution, the theoretical range of potential in molten carbonates appears more restricted in an oxoacidic medium than in an oxobasic medium, because the lower limit varies versus pO2‐ with a slope greater than that of the upper limit (Trémillon, 1974).

      Silicate melts have been so far an underestimated electrolytic medium acting as a solvent for oxides. This is mainly because E‐pO2– diagrams cannot be based on predictive thermodynamics and physical chemistry assessments such as the dilute electrolyte concept and its developments in the case of previous solvents, aqueous solutions particularly (Allanore, 2015). In silicate melts, and more generally molten oxides, oxygen tout‐court cannot be identified as the solvent, despite its abundance. Silicate melts are in fact a high‐temperature highly interconnected (polymerized) matrix in which solvation units cannot be easily defined and both ionic and covalent bonds rule the reactive entities that make up the melt network. Because of this, some approaches have been formalized in terms of the Lewis acid–base definition (network formers and their oxides, such as SiO2 and Al2O3 are acids; network modifiers and their oxides such as MgO, CaO, Na2O are bases) by using electronegativity and optical basicity that allow distinguishing and calculating three types of oxygen (bridging, non‐bridging, and so‐called free oxygen) whose mixing determines the polymerization and the thermodynamic properties of the melt mixture as a function of composition (Toop and Samis, 1962a,b; Allanore, 2013, 2015 and references therein; Moretti, 2020 and references therein). Nevertheless, silicate melts still lack a fully developed acid–base framework formalizing the thermodynamic properties of reactive species formed during the solvolysis, as the solvent itself changes its polymerization properties upon introduction of other oxide components, which are highly soluble contrary to what observed for salts in aqueous solutions. The most general thermodynamic approaches postulate mineral‐like molecular structures to interpolate existing data.

      Nevertheless, because of their nature, silicate melts can dissolve important amounts of metals. Besides, they exhibit a large range of thermal stability, with high temperature conditions that favor fast kinetics of redox exchanges. Upper temperature limits for electrochemical applications are given by the formation of gaseous silicon monoxide or by alkali oxide thermal decomposition in alkaline systems or by high vapor pressure for Mn‐bearing systems (Allanore, 2015). In terms of transport properties, silicate melts are a solvent with high viscosity, a fact that is however compensated by the high diffusivity of the metal cation (Allanore, 2013), i.e., the cathode reactant.

      Many measurements have however been carried out on melts of geological interest, also fostered by the interest in silicate electrolysis to produce on site metals and particularly molecular oxygen for terraformation of extraterrestrial planets (e.g., Haskin et al., 1992). Electrochemical series were then established in binary SiO2‐MO systems (e.g., Schreiber, 1987) but also in ternary joins such as the diopside one (Semkow and Haskin 1985; Colson et al., 1990) for redox exchanges of the type:

      (1.39)equation

      in which half‐reactions of the type

      (1.40)equation

      combine with Half‐reaction 1.7. Nevertheless, such series do