Quantitative Portfolio Management. Michael Isichenko

Читать онлайн.
Название Quantitative Portfolio Management
Автор произведения Michael Isichenko
Жанр Ценные бумаги, инвестиции
Серия
Издательство Ценные бумаги, инвестиции
Год выпуска 0
isbn 9781119821212



Скачать книгу

(1.3). Brokers provide services of trading “continuous futures,” or automatically rolled futures positions.

      

       Given a list of consecutive daily portfolio pnls, compute, in linear time, its maximum drawdown.

      From a quant interview

      The linear return (1.1), also known as simple or accounting return, defines a daily portfolio pnl

through dollar position
:

      (1.8)

      Here boldface notation is used for vectors in the space of portfolio securities. For pnl computation, the linear returns are cross-sectionally additive with position weights. Risk factor models (Sec. 4.2) add more prominence to the cross-sectional linear algebra of simple returns.

      It is also convenient to use log returns

      (1.9)

      which, unlike the linear returns, are serially additive, for a fixed initial investment in one asset, across time periods. In quant research, both types of return are used interchangeably.

, or a basis point (bps), which is in the ballpark of the return predictability (Sec. 2.3.3). The expectation, or forecast, of the log return (1.10) is

is the volatility (standard deviation) of the return. Due to the negative sign of the correction in (1.11), its effect can be meaningful even for a slightly non-dollar-neutral or volatility-exposed portfolio. Volatility is one of commonly used risk factors (Sec. 4.3).

      The difference between linear and log returns affects forecasting (Chapter 2), especially over longer horizons, because the operators of (linear) expectation and (concave) log do not commute. Even though statistical distribution of log returns may have better mathematical properties than those of linear returns, it is the linear return based pnl that is the target of portfolio optimization (Chapter 6). On the other hand, the log return plays a prominent role in the Kelly criterion (Sec. 6.9).

      Конец ознакомительного фрагмента.

      Текст предоставлен ООО «ЛитРес».

      Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.

      Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.

/9j/4AAQSkZJRgABAQEBLAEsAAD/7SVeUGhvdG9zaG9wIDMuMAA4QklNBAQAAAAAAAccAgAAAgAA ADhCSU0EJQAAAAAAEOjxXPMvwRihontnrcVk1bo4QklNBDoAAAAAAS8AAAAQAAAAAQAAAAAAC3By aW50T3V0cHV0AAAABQAAAABQc3RTYm9vbAEAAAAASW50ZWVudW0AAAAASW50ZQAAAABDbHJtAAAA D3ByaW50U2l4dGVlbkJpdGJvb2wAAAAAC3ByaW50ZXJOYW1lVEVYVAAAACYATQBpAGMAcgBvAHMA bwBmAHQAIABQAHIAaQBuAHQAIAB0AG8AIABQAEQARgAgACgAcgBlAGQAaQByAGUAYwB0AGUAZAAg ADIAKQAAAAAAD3ByaW50UHJvb2ZTZXR1cE9iamMAAAAMAFAAcgBvAG8AZgAgAFMAZQB0AHUAcAAA AAAACnByb29mU2V0dXAAAAABAAAAAEJsdG5lbnVtAAAADGJ1aWx0aW5Qcm9vZgAAAAlwcm9vZkNN WUsAOEJJTQQ7AAAAAAItAAAAEAAAAAEAAAAAABJwcmludE91dHB1dE9wdGlvbnMAAAAXAAAAAENw dG5ib29sAAAAAABDbGJyYm9vbAAAAAAAUmdzTW