Computational Intelligence and Healthcare Informatics. Группа авторов

Читать онлайн.
Название Computational Intelligence and Healthcare Informatics
Автор произведения Группа авторов
Жанр Программы
Серия
Издательство Программы
Год выпуска 0
isbn 9781119818694



Скачать книгу

the authors. In [41], pre-trained model GoogleNet is employed to classify chest radiograph report into normal and five chest pathologies namely, pleural effusion, consolidation, pulmonary edema, pneumothorax, and cardiomegaly through natural language processing techniques. The sentences were separated from the report into keywords such as “inclusion” and “exclusion” and report is classified into one of the six classes including normal class.

      Considering popularity of deep learning, four different models of AlexNet [34] and GoogleNet [65] are applied for thoracic image analysis wherein two of them are trained from ImageNet and two are trained from scratch. Then, these models are used for detecting TB from CXR radiography images. Parameters of AlexNet-T and GoogleNet-T are initialized from ImageNet, whereas AlexNet-U and GoogleNet-U parameters are trained from scratch. The performance of all four models are compared and it is observed that trained versions are having better accuracy than the untrained versions [35].

      In another model, focus was given only on eight pathologies of thoracic diseases [70]. Weakly supervised DCNN is applied for large set of images which might have more than one pathology in same image. The pre-trained model is adopted on ImageNet by excluding fully connected and final classification layer. In place of these layers, a transition layer, a global pooling layer, a prediction layer, and a loss layer are inserted in the end after last convolution layer. Weights are obtained from the pre-trained models except transition, and prediction layers were trained from scratch. These two layers help in finding plausible location of disease. Also, instead of conventional softmax function, three different loss functions are utilized, namely, Hinge loss, Euclidean loss, and Cross Entropy loss due to disproportion of number of images having pathologies and without pathology. Global pooling layer and prediction layer help in generating heatmap to map presence of pathology with maximum probability. Moreover, Cardiomegaly and Pneumothorax have been well recognized using the model based on ResNet50 [21] as compared to other pathologies.

      Subsequently, three branch attention guided CNN (AG-CNN) is proposed based on the two facts. First fact is that though the thoracic pathologies are located in a small region, complete CXR image is given as an input for training which add irrelevant noise in the network. Second fact is that the irregular border arises due to poor alignment of CXR, obstruct the performance of network [19]. ResNet50 and DenseNet121 have been used as backbone for two different version of AG-CNN in which global CNN uses complete image and a mask is created to crop disease specific region from the generated heat map of global CNN. The local CNN is then trained on disease specific part of the image and last pooling layers of both the CNNs are concatenated to fine tune the amalgamated branch. For classifying chest pathologies, conventional and deep learning approaches are used and are compared on the basis of error rate, accuracy, and training time [2]. Conventional models include Back Propagation Neural Network (BPNN) and Competitive Neural Network (CpNN) and deep learning model includes simple CNN. Deep CNN has better generalization ability than BPNN and CpNN but requires more iteration due to extraction of features at different layers.

      A pre-defined CNN for binary classification of chest radiographs which assess their ability on live customized dataset obtained from U.S. National Institutes of Health is presented in [18]. Before applying deep learning models, the dataset is separated into different categories and labeled manually with two different radiologist. Their labels are tallied and conflicting images are discarded. Normal images without any pathology were removed and 200,000 images were finally used for training purpose. Out of those images, models were trained on different number of images and performance of models noted in terms of AUC score. It is observed that modestly size images achieve better accuracy for binary classification into normal and abnormal chest radiograph. This automated image analysis will be useful in poor resource areas.

      The CheXNet deep learning algorithm is used to detect 14 pathologies in chest radio-graphs where the 121-layer DenseNet architecture is densely connected [49]. Ensemble network is generated by allowing multiple network to get trained on training set and networks which has less average prediction error are selected to become the part of ensemble network. The parameters of each ensemble network are initialized using the ImageNet pretrained network. The image input size is 512 × 512 and the optimization of Adams was used to train the NN parameter with batch size of 8 and learning rate of 0.0001. To prevent dropouts and decay, network was saved after every epoch. To deal with overfitting, early stopping of iteration was done.

      A