Traditionsgemäß hat die Wissenschaft das Universum als reglosen, trägen und leeren Raum betrachtet. Duane Elgin bringt außerwöhnliche Beweise aus Kosmologie, Biologie und Physik zusammen, um zu zeigen, dass das Universum nicht tot ist, sondern auf einzigartige Weise lebt – eine Einsicht, so zeigt er, die in Harmonie mit allen großen spirituellen Traditionen steht. Er untersucht, wie diese Sicht unser Konzept von uns selbst radikal transformiert, unseren Platz im Kosmos und die evolutionäre Reise (Flugbahn) unserer menschlichen Familie. Die Ansicht, dass unser Universum nicht lebt, hat zu zügellosem Materialismus und globaler Unwelt-Degeneration geführt. Um unsere planetarische Krise zu transformieren, müssen wir über die Trennung und Ausbeutung hinausgehen und lernen, die Erde zu bewahren, in Harmonie mit Allem was ist und in Kommunikation mit dem lebendigen Universum.
Монография посвящена изучению вопросов спектральной теории для определенных типов уравнений математической физики. Одной из целей, которые преследовали авторы, являлась выработка единых подходов к изучению спектра граничных задач для модельных вырождающихся уравнений и уравнений смешанного типа, изучаемых с позиций дифференциально – операторных уравнений. При этом за основу брались дифференциально – операторные уравнения первого и второго порядков по выделенной переменной t .
Лабораторный практикум содержит описание конструкций испытательного оборудования и методику проведения лабораторных работ, выполняемых студентами ВУЗов в соответствии с программой курсов «Механика» и «Прикладная механика». Рекомендовано в качестве учебного пособия для студентов, обучающихся по программам высшего образования по направлениям подготовки: «12.03.04 – Биотехнические системы и технологии», «13.03.02 – Электроэнергетика и электротехника», «15.03.03 – Прикладная механика», «18.03.01 – Химическая технология», «18.03.02 – Энерго- и ресурсосберегающие процессы в химической технологии нефтехимии биотехнологии», «19.03.02 − Продукты питания из растительного сырья», «19.03.04 − Технология продукции и организации общественного питания», «20.03.01 − Техносферная безопасность», «23.03.01 − Технология транспортных процессов».
Energy technologies have attracted great attention due to the fast development of sustainable energy. Biodiesel technologies have been identified as the sustainable route through which overdependence on fossil fuels can be reduced. Biodiesel has played a key role in handling the growing challenge of a global climate change policy. Biodiesel is defined as the monoalkyl esters of vegetable oils or animal fats. Biodiesel is a cost-effective, renewable, and sustainable fuel that can be made from vegetable oils and animal fats. Compared to petroleum-based diesel, biodiesel would offer a non-toxicity, biodegradability, improved air quality and positive impact on the environment, energy security, safe-to-handle, store and transport and so on. Biodiesels have been used as a replacement of petroleum diesel in transport vehicles, heavy-duty trucks, locomotives, heat oils, hydrogen production, electricity generators, agriculture, mining, construction, and forestry equipment. This book describes a comprehensive overview, covering a broad range of topics on biodiesel technologies and allied applications. Chapters cover history, properties, resources, fabrication methods, parameters, formulations, reactors, catalysis, transformations, analysis, in situ spectroscopies, key issues and applications of biodiesel technology. It also includes biodiesel methods, extraction strategies, biowaste utilization, oleochemical resources, non-edible feedstocks, heterogeneous catalysts, patents, and case-studies. Progress, challenges, future directions, and state-of-the-art biodiesel commercial technologies are discussed in detail. This book is an invaluable resource guide for professionals, faculty, students, chemical engineers, biotechnologists, and environmentalists in these research and development areas.
A multidisciplinary perspective on the dynamic processes occurring in Earth's mantle The convective motion of material in Earth's mantle, powered by heat from the deep interior of our planet, drives plate tectonics at the surface, generating earthquakes and volcanic activity. It shapes our familiar surface landscapes, and also stabilizes the oceans and atmosphere on geologic timescales. Mantle Convection and Surface Expressions brings together perspectives from observational geophysics, numerical modelling, geochemistry, and mineral physics to build a holistic picture of the deep Earth. It explores the dynamic processes occurring in the mantle as well as the associated heat and material cycles. Volume highlights include: Perspectives from different scientific disciplines with an emphasis on exploring synergies Current state of the mantle, its physical properties, compositional structure, and dynamic evolution Transport of heat and material through the mantle as constrained by geophysical observations, geochemical data and geodynamic model predictions Surface expressions of mantle dynamics and its control on planetary evolution and habitability The American Geophysical Union promotes discovery in Earth and space science for the benefit of humanity. Its publications disseminate scientific knowledge and provide resources for researchers, students, and professionals.
Mysterious «supercharge effects,» encountered in formation testing pressure transient analysis, and reservoir invasion, mudcake growth, dynamic filtration, stuck-pipe remediation, and so on, are often discussed in contrasting petrophysical versus drilling contexts. However, these effects are physically coupled and intricately related. The authors focus on a comprehensive formulation, provide solutions for different specialized limits, and develop applications that illustrate how the central ideas can be used in seemingly unrelated disciplines. This approach contributes to a firm understanding of logging and drilling principles. Fortran source code, furnished where applicable, is listed together with recently developed software applications and conveniently summarized throughout the book. In addition, common (incorrect) methods used in the industry are re-analyzed and replaced with more accurate models, which are then used to address challenging field objectives. Sophisticated mathematics is explained in «down to earth» terms, but empirical validations, in this case through Catscan experiments, are used to «keep predictions honest.» Similarly, early-time, low mobility, permeability prediction models used in formation testing, several invented by one of the authors, are extended to handle supercharge effects in overbalanced drilling and near-well pressure deficits encountered in underbalanced drilling. These methods are also motivated by reality. For instance, overpressures of 2,000 psi and underpressures near 500 psi are routinely reported in field work, thus imparting a special significance to the methods reported in the book. This new volume discusses old problems and modern challenges, formulates and develops advanced models applicable to both drilling and petrophysical objectives. The presentation focuses on central unifying physical models which are carefully formulated and mathematically solved. The wealth of applications examples and supporting software discussed provides readers with a unified focus behind daily work activities, emphasizing common features and themes rather than unrelated methods and work flows. This comprehensive book is «must» reading for every petroleum engineer.