A ‘textbook’ plant typically comprises about 85% water and 13.5% carbohydrates. The remaining fraction contains at least 14 mineral elements, without which plants would be unable to complete their life cycles. Understanding plant nutrition and applying this knowledge to practical use is important for several reasons. First, an understanding of plant nutrition allows fertilisers to be used more wisely. Second, the nutritional composition of crops must be tailored to meet the health of humans and livestock. Third, many regions of the world are currently unsuitable for crop production, and an understanding of plant nutrition can be used to develop strategies either for the remediation of this land or for the cultivation of novel crops. That application of knowledge of plant nutrition can be achieved through genotypic or agronomic approaches. Genotypic approaches, based on crop selection and / or breeding (conventional or GM), have recently begun to benefit from technological advances, including the completion of plant genome sequencing projects. This book provides an overview of how plant nutritional genomics, defined as the interaction between a plant's genome and its nutritional characteristics, has developed in the light of these technological advances, and how this new knowledge might usefully be applied. This is a book for researchers and professionals in plant molecular genetics, biochemistry and physiology, in both the academic and industrial sectors.
Plant Breeding Reviews presents state-of-the-art reviews on plant genetics and the breeding of all types of crops by both traditional means and molecular methods. Many of the crops widely grown today stem from a very narrow genetic base; understanding and preserving crop genetic resources is vital to the security of food systems worldwide. The emphasis of the series is on methodology, a fundamental understanding of crop genetics, and applications to major crops.
This book provides a broad overview of solute transport in plants. It first determines what solutes are present in plants and what roles they play. The physical bases of ion and water movement are considered. The volume then discusses the ways in which solutes are moved across individual membranes, within and between cells, and around the plant. Having dealt with the role of plant solutes in ‘normal’ conditions, the volume proceeds to examine how the use of solutes has been adapted to more extreme environments such as hot, dry deserts, freezing mountains and saline marshes. A crucial stage in the life cycle of most plants, the internally-controlled dehydration concomitant with seed formation, is also addressed. Throughout the volume the authors link our increasing understanding of the cellular and molecular bases of solute movement with the roles that these fulfil in the whole plant under both ideal and stressful conditions, showing how these are dictated by the physical laws that govern solute and water movement. The book is directed at postgraduates, researchers and professionals in plant physiology, biochemistry and molecular biology.
Over the past decade, our understanding of plant adaptation to environmental stress has grown considerably. This book focuses on stress caused by the inanimate components of the environment associated with climatic, edaphic and physiographic factors that substantially limit plant growth and survival. Categorically these are abiotic stresses, which include drought, salinity, non-optimal temperatures and poor soil nutrition. Another stress, herbicides, is covered in this book to highlight how plants are impacted by abiotic stress originating from anthropogenic sources. The book also addresses the high degree to which plant responses to quite diverse forms of environmental stress are interconnected, describing the ways in which the plant utilizes and integrates many common signals and subsequent pathways to cope with less favorable conditions. The book is directed at researchers and professionals in plant physiology, cell biology and molecular biology, in both the academic and industrial sectors.
Drawing from a lifetime of teaching botany, Dr. Nels Lersten presents the study of the structures and processes involved in the reproduction of plants in his text Flowering Plant Embryology. This richly illustrated reference text, with more than 350 figures and illustrations, presents general angiosperm embryology as it applies to economically important plants. The unique focus on economically important species increases the relevance of this book to today’s students and researchers in the plant sciences. Lersten emphasizes the plant species that affect human livelihood, including weeds and other cultivated plants that are used for commercial products. Selected from the thousands of economically important plants, the examples chosen for illustration and discussion are familiar, especially to students from North America, Northern Europe, and Japan. Although the emphasis of this book is economically important plants, the information within applies to almost all flowering plants. Extremely readable and well-written, this book is neither dense nor academic in tone. Lersten treats topics with a uniformity of style and organization that enhances comprehension. Terms are well-defined and the derivation of each is explained to further facilitate student learning. The book presents research results, hypotheses, and speculations about why things are as they are, with supporting facts and specific examples that provide a firm foundation for students’ understanding of embryological diversity among economic plants.
This one-stop reference systematically covers key aspects in early drug development that are directly relevant to the discovery phase and are required for first-in-human studies. Its broad scope brings together critical knowledge from many disciplines, ranging from process technology to pharmacology to intellectual property issues. After introducing the overall early development workflow, the critical steps of early drug development are described in a sequential and enabling order: the availability of the drug substance and that of the drug product, the prediction of pharmacokinetics and -dynamics, as well as that of drug safety. The final section focuses on intellectual property aspects during early clinical development. The emphasis throughout is on recent case studies to exemplify salient points, resulting in an abundance of practice-oriented information that is usually not available from other sources. Aimed at medicinal chemists in industry as well as academia, this invaluable reference enables readers to understand and navigate the challenges in developing clinical candidate molecules that can be successfully used in phase one clinical trials.
How to Create and Conduct Real-Life Reusable Case Studies with Industry Employer Alliances and Projects Written and Endorsed by Science and Business Professionals in the Research Triangle Park in North Carolina, USA. Many students and university teachers are unfamiliar with the industry environment. Case studies developed in collaboration with working professionals can help students and professors bridge the gap between universities and industry. This book provides guidance on how to approach industry professionals and create educational alliances. The strategy of establishing contact with industry employers and the process of developing and teaching case-studies are described. Among the case-studies are examples of how to identify biomarkers and new drugs simultaneously, prioritize and develop products in compliance with rules and regulations, commercialize products and protect and manage the intellectual property, optimize processes and technologies for manufacturing, and minimize human errors in production.
Clearly divided into three sections on the interface influence of materials and surface modifications, the physical and physicochemical surface characterization, and the biological characterization of the interface and biosystem reactions, this book is the first to concentrate on the highly important area of metal-based implants and their improved functionality and acceptance by the body.
Here, an extremely experienced team of authors from five different continents provides a timely review of progress in the use and exploitation of soil bacteria to improve crop and plant growth. They present novel ideas on how to grow better, more successful crops, in an environmentally sound way, making this invaluable reading for those working in the pharmaceutical, biotechnological and agricultural industries.
This book describes medical applications of recombinant proteins and monoclonal antibodies, some of which have already been on the market for several years while others have only recently been launched. It also highlights the manufacturing processes for individual products, the strategies that were taken by companies in the clinical development, and the hurdles that were encountered in clinical trials and had to be overcome before approval by regulatory authorities. Finally, this book illustrates strategies to modify and improve the pharmacodynamic and pharmacokinetic properties of naturally occurring proteins thus paving the way for a new era in biotechnology. Foreword written by Jurgen Drews.