Прочая образовательная литература

Различные книги в жанре Прочая образовательная литература

Global Positioning Systems, Inertial Navigation, and Integration

Angus Andrews P.

An updated guide to GNSS and INS, and solutions to real-world GPS/INS problems with Kalman filtering Written by recognized authorities in the field, this second edition of a landmark work provides engineers, computer scientists, and others with a working familiarity with the theory and contemporary applications of Global Navigation Satellite Systems (GNSS), Inertial Navigational Systems (INS), and Kalman filters. Throughout, the focus is on solving real-world problems, with an emphasis on the effective use of state-of-the-art integration techniques for those systems, especially the application of Kalman filtering. To that end, the authors explore the various subtleties, common failures, and inherent limitations of the theory as it applies to real-world situations, and provide numerous detailed application examples and practice problems, including GNSS-aided INS, modeling of gyros and accelerometers, and SBAS and GBAS. Drawing upon their many years of experience with GNSS, INS, and the Kalman filter, the authors present numerous design and implementation techniques not found in other professional references. This Second Edition has been updated to include: GNSS signal integrity with SBAS Mitigation of multipath, including results Ionospheric delay estimation with Kalman filters New MATLAB programs for satellite position determination using almanac and ephemeris data and ionospheric delay calculations from single and dual frequency data New algorithms for GEO with L1 /L5 frequencies and clock steering Implementation of mechanization equations in numerically stable algorithms To enhance comprehension of the subjects covered, the authors have included software in MATLAB, demonstrating the working of the GNSS, INS, and filter algorithms. In addition to showing the Kalman filter in action, the software also demonstrates various practical aspects of finite word length arithmetic and the need for alternative algorithms to preserve result accuracy.

Special Relativity and Motions Faster than Light

Roland Wengenmayr

While the theory of special relativity is often associated with the idea of traveling faster than light, this book shows that in all these cases subtle forces of nature conspire to prevent these motions being harnessed to send signals faster than the speed of light. The author tackles these topics both conceptually, with minimal or no mathematics, and quantitatively, making use of numerous illustrations to clarify the discussion. The result is a joy to read for both scientists familiar with the subject and laypeople wishing to understand something of special relativity.

Principles of Plasma Discharges and Materials Processing

Michael Lieberman A.

A Thorough Update of the Industry Classic on Principles of Plasma Processing The first edition of Principles of Plasma Discharges and Materials Processing, published over a decade ago, was lauded for its complete treatment of both basic plasma physics and industrial plasma processing, quickly becoming the primary reference for students and professionals. The Second Edition has been carefully updated and revised to reflect recent developments in the field and to further clarify the presentation of basic principles. Along with in-depth coverage of the fundamentals of plasma physics and chemistry, the authors apply basic theory to plasma discharges, including calculations of plasma parameters and the scaling of plasma parameters with control parameters. New and expanded topics include: * Updated cross sections * Diffusion and diffusion solutions * Generalized Bohm criteria * Expanded treatment of dc sheaths * Langmuir probes in time-varying fields * Electronegative discharges * Pulsed power discharges * Dual frequency discharges * High-density rf sheaths and ion energy distributions * Hysteresis and instabilities * Helicon discharges * Hollow cathode discharges * Ionized physical vapor deposition * Differential substrate charging With new chapters on dusty plasmas and the kinetic theory of discharges, graduate students and researchers in the field of plasma processing should find this new edition more valuable than ever.

Output Coupling in Optical Cavities and Lasers

Группа авторов

Authored by one of the founders and major players in this field of research, this is a thorough and comprehensive approach to the quantum mechanical output coupling theory of lasers – an important area of optical physics that has so far been neglected in the scientific literature. Clearly structured, the various sections cover one-dimensional optical cavity, laser, and microcavity laser with output coupling, atom-field interaction in a free-dimensional space, 3D analysis of spontaneous emission in a planar microcavity with output coupling, plus two-atom spontaneous emission. With numerous end-of-chapter problems, this is vital reading for theoretical physicists, laser specialists, and physicists in industry, as well as students and lecturers in physics.

Polarized Light in Liquid Crystals and Polymers

Группа авторов

Polarized Light in Liquid Crystals and Polymers deals with the linear optics of birefringent materials, such as liquid crystals and polymers, and surveys light propagation in such media with special attention to applications. It is unique in treating light propagation in micro- and nanostructured birefringent optical elements, such as lenses and gratings composed of birefringent materials, as well as the spatial varying anisotropic structures often found in miniaturized liquid crystal devices.

Theory and Design of Charged Particle Beams

Группа авторов

This indispensable work offers a broad synoptic description of beams, applicable to a wide range of other devices, such as low-energy focusing and transport systems and high-power microwave sources. The monograph develops the material from the basic principles in a systematic way and discusses the underlying physics and validity of theoretical relationships, design formulas and scaling laws. Assumptions and approximations are clearly indicated throughout. This new, revised and updated edition has 10% additional content, and features, among others, a new chapter on beam physics research from 1993 to 2007, significant enhancement of chapter 6 on emittance variation, updated references and color image plates.

Theory and Design of Charged Particle Beams

Группа авторов

Although particle accelerators are the book's main thrust, it offers a broad synoptic description of beams which applies to a wide range of other devices such as low-energy focusing and transport systems and high-power microwave sources. Develops material from first principles, basic equations and theorems in a systematic way. Assumptions and approximations are clearly indicated. Discusses underlying physics and validity of theoretical relationships, design formulas and scaling laws. Features a significant amount of recent work including image effects and the Boltzmann line charge density profiles in bunched beams.

Guide to Analysis of DNA Microarray Data

Группа авторов

Written for biologists and medical researchers who don't have any special training in data analysis and statistics, Guide to Analysis of DNA Microarray Data, Second Edition begins where DNA array equipment leaves off: the image produced by the microarray. The text deals with the questions that arise starting at this point, providing an introduction to microarray technology, then moving on to image analysis, data analysis, cluster analysis, and beyond. With all chapters rewritten, updated, and expanded to include the latest generation of technology and methods, Guide to Analysis of DNA Microarray Data, Second Edition offers practitioners reliable information using concrete examples and a clear, comprehensible style. This Second Edition features entirely new chapters on: * Image analysis * Experiment design * Automated analysis, integrated analysis, and systems biology * Interpretation of results Intended for readers seeking practical applications, this text covers a broad spectrum of proven approaches in this rapidly growing technology. Additional features include further reading suggestions for each chapter, as well as a thorough review of available analysis software.

A Practical Guide to Reliable Finite Element Modelling

Группа авторов

Many books have been written about the finite element method; little however has been written about procedures that assist a practicing engineer in undertaking an analysis in such a way that errors and uncertainties can be controlled. In A Practical Guide to Reliable Finite Element Modelling, Morris addresses this important area. His book begins by introducing the reader to finite element analysis (FEA), covering the fundamental principles of the method, whilst also outlining the potential problems involved. He then establishes consistent methods for carrying out analyses and obtaining accurate and reliable results, concluding with a new method for undertaking error control led analyses which is illustrated by means of two case studies. The book addresses a number of topics that: • Systematically cover an introduction to FEA, how computers build linear-static and linear-dynamic finite element models, the identification of error sources, error control methods and error-controlled analyses. • Enable the reader to support the design of complex structures with reliable, repeatable analyses using the finite element method. • Provide a basis for establishing good practice that could underpin a legal defence in the event of a claim for negligence. A Practical Guide to Reliable Finite Element Modelling will appeal to practising engineers engaged in conducting regular finite element analyses, particularly those new to the field. It will also be a resource for postgraduate students and researchers addressing problems associated with errors in the finite element method. This book is supported by an author maintained website at http://www.femec.co.uk

Vibrations and Acoustic Radiation of Thin Structures

Paul J. T. Filippi

Sound is produced by vibrations and as such can be dampened or augmented based on materials selection. This title looks at the effects of sound and vibration on thin structures and details how damage may be avoided, acoustical effects created, and sound levels controlled.