The first half deals with the motion of a single particle under the influence of electronic and magnetic fields. The basic language of linear and circular accelerators is developed. The principle of phase stability is introduced along with phase oscillations in linear accelerators and synchrotrons. Presents a treatment of betatron oscillations followed by an excursion into nonlinear dynamics and its application to accelerators. The second half discusses intensity dependent effects, particularly space charge and coherent instabilities. Includes tables of parameters for a selection of accelerators which are used in the numerous problems provided at the end of each chapter.
Focusing on real applications of nanocomposites and nanotechnologies for sustainable development, this book shows how nanocomposites can help to solve energy and environmental problems, including a broad overview of energy-related applications and a unique selection of environmental topics. Clearly structured, the first part covers such energy-related applications as lithium ion batteries, solar cells, catalysis, thermoelectric waste heat harvesting and water splitting, while the second part provides unique perspectives on environmental fields, including nuclear waste management and carbon dioxide capture and storage. The result is a successful combination of fundamentals for newcomers to the field and the latest results for experienced scientists, engineers, and industry researchers.
A great introductory book that details reliable approaches to problems met in standard microarray data analyses. It provides examples of established approaches such as cluster analysis, function prediction, and principle component analysis. Discover real examples to illustrate the key concepts of data analysis. Written for those without any advanced background in math, statistics, or computer sciences, this book is essential for anyone interested in harnessing the immense potential of microarrays in biology and medicine.
An Introduction to Tissue-Biomaterial Interactions acquaints an undergraduate audience with the fundamental biological processes that influence these sophisticated, cutting-edge procedures. Chapters one through three provide more detail about the molecular-level events that happen at the tissue-implant interface, while chapters four through ten explore selected material, biological, and physiological consequences of these events. The importance of the body’s wound-healing response is emphasized throughout. Specific topics covered include:Structure and properties of biomaterials Proteins Protein-surface interactions Blood-biomaterial interactions Inflammation and infection The immune system Biomaterial responses to implantation Biomaterial surface engineering Intimal hyperplasia and osseointegration as examples of tissue-biomaterial interactions The text also provides extensive coverage of the three pertinent interfaces between the body and the biomaterial, between the body and the living cells, and between the cells and the biomaterial that are critical in the development of tissue-engineered products that incorporate living cells within a biomaterial matrix. Ideal for a one-semester, biomedical engineering course, An Introduction to Tissue-Biomaterial Interactions provides a solid framework for understanding today’s and tomorrow’s implantable biomedical devices.
This book uniquely relates the broad impact of signal transduction research on the understanding and treatment of human disease. There have been significant advances in the area of signaling in disease processes, yet no resource presently connects these advances with understanding of disease processes and applications for novel therapeutics. Given the emphasis on translational research and biological relevance in biotechnology, and, conversely, the importance of molecular approaches for clinical research, it is evident that a single resource bridging signaling research and human disease will be invaluable.
The latest edition of this highly successful text, covers the major advances in the methods used in cellular and molecular pathology. In recent years, knowledge of the molecular organization of the cell has led to the development of powerful new techniques that bring greater accuracy and objectives to the diagnosis, prognosis and management of many diseases and to the study of pathological states. This book describes the latest molecular techniques available for the analysis of diseases. In particular it includes new techniques using fluorescent dyes, DNA microarrays, protein chemistry, and mass spectrometry. It also incorporates information from the Human Genome Project, and the new disciplines of genomics and proteomics, where relevant to pathology. Color plates are a new feature of this edition, illustrating the advances in fluorescence labeling of cells.
A number of chronic respiratory diseases including chronic bronchitis, asthma, cystic fibrosis and bronchiectasis are characterized by mucus hypersecretion. Following damage to the airway epithelium, a repair process of dedifferentiation, regenerative proliferation and redifferentiation takes place that is invariably accompanied by mucus hypersecretion as a key element in the host defence mechanism. In chronic respiratory diseases, however, excessive mucus production leads to a pathological state with increased risk of infection, hospitalization and morbidity. An understanding of the mechanisms that underlie and maintain this hypersecretory phenotype is therefore crucial for the development of rational approaches to therapy. Despite a high and increasing prevalence and cost to healthcare services and society, mucus hypersecretion in chronic respiratory disease has received little attention until recently, probably because of the difficulties inherent in studying this pathology. Only in the last few years have some of the genes involved in mucus secretion been characterized. The recent availability of genomic sequence information and specific antibodies has led to an explosion of interest in this area making this publication particularly timely. This book draws together contributions from an international and interdisciplinary group of experts, whose work is focused on both basic and clinical aspects of the problem. Coverage includes epidemiology, airways infection and mucus hypersecretion, the genetics and regulation of mucus production, models of mucus hypersecretion, and the implications of new knowledge for the development of novel therapies.
This new work contains the first integrated discussion of the role of olfaction in mosquito-host interactions. It covers the practical applications of this knowledge in attempting to control malaria as a problem for world health. The volume begins with a general overview of mosquito life cycle styles and how odour-mediated host location fits into the repertoire of behaviours that a specific species may exhibit. Certain aspects of insect olfaction and its underlying physiological mechanisms are incorporated within the book.
Prestigious contributors describe the genetic, molecular, anatomical and neurochemical mechanisms and pathways that operate to regulate and control circadian rhythmicity and functioning in organisms ranging from unicellular algae to human beings. Also considers the implications of the basic and clinical research for humans.
Presented here are the most up-to-date research findings of leading international scientists in the field of aging. The collected data explores the biological, medical, and chemical implications and the latest thinking on the role of proto-oncogenes and their relationship to cell development and deterioration in amphibians, the role of the eukaryotic cell cycle, and the role of proto-oncogenes in differentiation and development.