This highly detailed reference represents an elaborate development of the theory of processing oil and natural gas and its application in the field – indispensable for graduate engineering students and professionals alike. The renowned expert author, a professor at Moscow State University, has ample experience in both lecturing and publishing, albeit in the Russian language. This book is thus the first to provide a translation compiling his extensive knowledge, much of which remained unpublished due to security restrictions in the former Soviet Union. Based upon and compiled from Professor Sinaiski's university lectures, the first chapters treat the technical facilities for preparing and processing natural hydrocarbon substances. The following systematic approach go on to explain the behaviors of fluids, gases and droplets separately for solutions, suspensions and emulsions, as well as for gas-liquid mixtures. The resulting work is of interest both for senior students as well as for engineers working in this field.
This book/CD package provides a reference on electron energy loss spectrometry (EELS) with the transmission electron microscope, an established technique for chemical and structural analysis of thin specimens in a transmission electron microscope. Describing the issues of instrumentation, data acquisition, and data analysis, the authors apply this technique to several classes of materials, namely ceramics, metals, polymers, minerals, semiconductors, and magnetic materials. The accompanying CD-ROM consists of a compendium of experimental spectra.
In this clear and concise introduction to thermodynamics and statistical mechanics the reader, who will have some previous exposure to thermodynamics, will be guided through each of the two disciplines separately initially to provide an in-depth understanding of the area and thereafter the connection between the two is presented and discussed. In addition, mathematical techniques are introduced at appropriate times, highlighting such use as: exact and inexact differentials, partial derivatives, Caratheodory's theorem, Legendre transformation, and combinatory analysis. * Emphasis is placed equally on fundamentals and applications * Several problems are included
Heat transfer is the area of engineering science which describes the energy transport between material bodies due to a difference in temperature. The three different modes of heat transport are conduction, convection and radiation. In most problems, these three modes exist simultaneously. However, the significance of these modes depends on the problems studied and often, insignificant modes are neglected. Very often books published on Computational Fluid Dynamics using the Finite Element Method give very little or no significance to thermal or heat transfer problems. From the research point of view, it is important to explain the handling of various types of heat transfer problems with different types of complex boundary conditions. Problems with slow fluid motion and heat transfer can be difficult problems to handle. Therefore, the complexity of combined fluid flow and heat transfer problems should not be underestimated and should be dealt with carefully. This book: Is ideal for teaching senior undergraduates the fundamentals of how to use the Finite Element Method to solve heat transfer and fluid dynamics problems Explains how to solve various heat transfer problems with different types of boundary conditions Uses recent computational methods and codes to handle complex fluid motion and heat transfer problems Includes a large number of examples and exercises on heat transfer problems In an era of parallel computing, computational efficiency and easy to handle codes play a major part. Bearing all these points in mind, the topics covered on combined flow and heat transfer in this book will be an asset for practising engineers and postgraduate students. Other topics of interest for the heat transfer community, such as heat exchangers and radiation heat transfer, are also included.
Industrial Ethernet ist schon heute fester Bestandteil eines industriellen Netzwerkes. Durch die Echtzeitfahigkeit von PROFINET wird Ethernet nun auch der Standard fur die Anbindung von Feldkomponenten und Antriebstechnik. Damit das von Buroanwendungen gepragte Ethernet auch industrietauglich wird, mussen industrielle Anforderungen wie Verfugbarkeit, Echtzeitfahigkeit und Robustheit erfullt werden. Dieses Buch vermittelt Anlagenplanern und -betreibern, Programmierern und Inbetriebsetzern die Grundlagen und Begriffe fur den Einsatz von Ethernet-LAN-Techniken in der Industrieautomatisierung mit SIMATIC. Die Autoren beschreiben neben Grundlagen und Projektierung auch die Diagnose eines TCP/IP basierten Netzwerkes sowie die Fokusthemen wie IT Security und Wireless-Anwendungen. Au?erdem wird auf die aktuellen Komponenten und Ubertragungsmedien in der SIMATIC eingegangen. So erhalt der Leser einen schnellen und praxisnahen Einstieg in das Thema. 2. Auflage, (Titel der 1. Auflage: «IT in der Industrieautomatisierung»)
A timely introduction to current research on PID and predictive control by one of the leading authors on the subject PID and Predictive Control of Electric Drives and Power Supplies using MATLAB/Simulink examines the classical control system strategies, such as PID control, feed-forward control and cascade control, which are widely used in current practice. The authors share their experiences in actual design and implementation of the control systems on laboratory test-beds, taking the reader from the fundamentals through to more sophisticated design and analysis. The book contains sections on closed-loop performance analysis in both frequency domain and time domain, presented to help the designer in selection of controller parameters and validation of the control system. Continuous-time model predictive control systems are designed for the drives and power supplies, and operational constraints are imposed in the design. Discrete-time model predictive control systems are designed based on the discretization of the physical models, which will appeal to readers who are more familiar with sampled-data control system. Soft sensors and observers will be discussed for low cost implementation. Resonant control of the electric drives and power supply will be discussed to deal with the problems of bias in sensors and unbalanced three phase AC currents. Brings together both classical control systems and predictive control systems in a logical style from introductory through to advanced levels Demonstrates how simulation and experimental results are used to support theoretical analysis and the proposed design algorithms MATLAB and Simulink tutorials are given in each chapter to show the readers how to take the theory to applications. Includes MATLAB and Simulink software using xPC Target for teaching purposes A companion website is available Researchers and industrial engineers; and graduate students on electrical engineering courses will find this a valuable resource.
Theoretical and practical tools to master matrix code design strategy and technique Error correcting and detecting codes are essential to improving system reliability and have popularly been applied to computer systems and communication systems. Coding theory has been studied mainly using the code generator polynomials; hence, the codes are sometimes called polynomial codes. On the other hand, the codes designed by parity check matrices are referred to in this book as matrix codes. This timely book focuses on the design theory for matrix codes and their practical applications for the improvement of system reliability. As the author effectively demonstrates, matrix codes are far more flexible than polynomial codes, as they are capable of expressing various types of code functions. In contrast to other coding theory publications, this one does not burden its readers with unnecessary polynomial algebra, but rather focuses on the essentials needed to understand and take full advantage of matrix code constructions and designs. Readers are presented with a full array of theoretical and practical tools to master the fine points of matrix code design strategy and technique: * Code designs are presented in relation to practical applications, such as high-speed semiconductor memories, mass memories of disks and tapes, logic circuits and systems, data entry systems, and distributed storage systems * New classes of matrix codes, such as error locating codes, spotty byte error control codes, and unequal error control codes, are introduced along with their applications * A new parallel decoding algorithm of the burst error control codes is demonstrated In addition to the treatment of matrix codes, the author provides readers with a general overview of the latest developments and advances in the field of code design. Examples, figures, and exercises are fully provided in each chapter to illustrate concepts and engage the reader in designing actual code and solving real problems. The matrix codes presented with practical parameter settings will be very useful for practicing engineers and researchers. References lead to additional material so readers can explore advanced topics in depth. Engineers, researchers, and designers involved in dependable system design and code design research will find the unique focus and perspective of this practical guide and reference helpful in finding solutions to many key industry problems. It also can serve as a coursebook for graduate and advanced undergraduate students.
The main subjects in this book relate to software development using cutting-edge technologies for real-world industrial automation applications A hands-on approach to applying a wide variety of emerging technologies to modern industrial practice problems Explains key concepts through clear examples, ranging from simple to more complex problem domains, and all based on real-world industrial problems A useful reference book for practicing engineers as well as an updated resource book for researchers
Includes a solution manual for problems. Provides MATLAB code for examples and solutions. Deals with robust systems in both theory and practice.
Process Identification and PID Control enables students and researchers to understand the basic concepts of feedback control, process identification, autotuning as well as design and implement feedback controllers, especially, PID controllers. The first The first two parts introduce the basics of process control and dynamics, analysis tools (Bode plot, Nyquist plot) to characterize the dynamics of the process, PID controllers and tuning, advanced control strategies which have been widely used in industry. Also, simple simulation techniques required for practical controller designs and research on process identification and autotuning are also included. Part 3 provides useful process identification methods in real industry. It includes several important identification algorithms to obtain frequency models or continuous-time/discrete-time transfer function models from the measured process input and output data sets. Part 4 introduces various relay feedback methods to activate the process effectively for process identification and controller autotuning. Combines the basics with recent research, helping novice to understand advanced topics Brings several industrially important topics together: Dynamics Process identification Controller tuning methods Written by a team of recognized experts in the area Includes all source codes and real-time simulated processes for self-practice Contains problems at the end of every chapter PowerPoint files with lecture notes available for instructor use