Математика

Различные книги в жанре Математика

Foundations of Risk Analysis

Terje Aven

Foundations of Risk Analysis presents the issues core to risk analysis – understanding what risk means, expressing risk, building risk models, addressing uncertainty, and applying probability models to real problems. The author provides the readers with the knowledge and basic thinking they require to successfully manage risk and uncertainty to support decision making. This updated edition reflects recent developments on risk and uncertainty concepts, representations and treatment. New material in Foundations of Risk Analysis includes: An up to date presentation of how to understand, define and describe risk based on research carried out in recent years. A new definition of the concept of vulnerability consistent with the understanding of risk. Reflections on the need for seeing beyond probabilities to measure/describe uncertainties. A presentation and discussion of a method for assessing the importance of assumptions (uncertainty factors) in the background knowledge that the subjective probabilities are based on A brief introduction to approaches that produce interval (imprecise) probabilities instead of exact probabilities. In addition the new version provides a number of other improvements, for example, concerning the use of cost-benefit analyses and the As Low As Reasonably Practicable (ALARP) principle. Foundations of Risk Analysis provides a framework for understanding, conducting and using risk analysis suitable for advanced undergraduates, graduates, analysts and researchers from statistics, engineering, finance, medicine and the physical sciences, as well as for managers facing decision making problems involving risk and uncertainty.

Concepts of Combinatorial Optimization

Vangelis Paschos Th.

Combinatorial optimization is a multidisciplinary scientific area, lying in the interface of three major scientific domains: mathematics, theoretical computer science and management. The three volumes of the Combinatorial Optimization series aim to cover a wide range of topics in this area. These topics also deal with fundamental notions and approaches as with several classical applications of combinatorial optimization. Concepts of Combinatorial Optimization, is divided into three parts: – On the complexity of combinatorial optimization problems, presenting basics about worst-case and randomized complexity; – Classical solution methods, presenting the two most-known methods for solving hard combinatorial optimization problems, that are Branch-and-Bound and Dynamic Programming; – Elements from mathematical programming, presenting fundamentals from mathematical programming based methods that are in the heart of Operations Research since the origins of this field.

Applications of Combinatorial Optimization

Vangelis Paschos Th.

Combinatorial optimization is a multidisciplinary scientific area, lying in the interface of three major scientific domains: mathematics, theoretical computer science and management. The three volumes of the Combinatorial Optimization series aims to cover a wide range of topics in this area. These topics also deal with fundamental notions and approaches as with several classical applications of combinatorial optimization. “Applications of Combinatorial Optimization” is presenting a certain number among the most common and well-known applications of Combinatorial Optimization.

Concepts of Combinatorial Optimization

Vangelis Paschos Th.

Combinatorial optimization is a multidisciplinary scientific area, lying in the interface of three major scientific domains: mathematics, theoretical computer science and management. The three volumes of the Combinatorial Optimization series aims to cover a wide range of topics in this area. These topics also deal with fundamental notions and approaches as with several classical applications of combinatorial optimization. Concepts of Combinatorial Optimization, is divided into three parts: On the complexity of combinatorial optimization problems, that presents basics about worst-case and randomized complexity; Classical solution methods, that presents the two most-known methods for solving hard combinatorial optimization problems, that are Branch-and-Bound and Dynamic Programming; Elements from mathematical programming, that presents fundamentals from mathematical programming based methods that are in the heart of Operations Research since the origins of this field.

Classic Problems of Probability

Prakash Gorroochurn

Winner of the 2012 PROSE Award for Mathematics from The American Publishers Awards for Professional and Scholarly Excellence. «A great book, one that I will certainly add to my personal library.» —Paul J. Nahin, Professor Emeritus of Electrical Engineering, University of New Hampshire Classic Problems of Probability presents a lively account of the most intriguing aspects of statistics. The book features a large collection of more than thirty classic probability problems which have been carefully selected for their interesting history, the way they have shaped the field, and their counterintuitive nature. From Cardano's 1564 Games of Chance to Jacob Bernoulli's 1713 Golden Theorem to Parrondo's 1996 Perplexing Paradox, the book clearly outlines the puzzles and problems of probability, interweaving the discussion with rich historical detail and the story of how the mathematicians involved arrived at their solutions. Each problem is given an in-depth treatment, including detailed and rigorous mathematical proofs as needed. Some of the fascinating topics discussed by the author include: Buffon's Needle problem and its ingenious treatment by Joseph Barbier, culminating into a discussion of invariance Various paradoxes raised by Joseph Bertrand Classic problems in decision theory, including Pascal's Wager, Kraitchik's Neckties, and Newcomb's problem The Bayesian paradigm and various philosophies of probability Coverage of both elementary and more complex problems, including the Chevalier de Méré problems, Fisher and the lady testing tea, the birthday problem and its various extensions, and the Borel-Kolmogorov paradox Classic Problems of Probability is an eye-opening, one-of-a-kind reference for researchers and professionals interested in the history of probability and the varied problem-solving strategies employed throughout the ages. The book also serves as an insightful supplement for courses on mathematical probability and introductory probability and statistics at the undergraduate level.

Fundamentals of Stochastic Networks

Oliver Ibe C.

An interdisciplinary approach to understanding queueing and graphical networks In today's era of interdisciplinary studies and research activities, network models are becoming increasingly important in various areas where they have not regularly been used. Combining techniques from stochastic processes and graph theory to analyze the behavior of networks, Fundamentals of Stochastic Networks provides an interdisciplinary approach by including practical applications of these stochastic networks in various fields of study, from engineering and operations management to communications and the physical sciences. The author uniquely unites different types of stochastic, queueing, and graphical networks that are typically studied independently of each other. With balanced coverage, the book is organized into three succinct parts: Part I introduces basic concepts in probability and stochastic processes, with coverage on counting, Poisson, renewal, and Markov processes Part II addresses basic queueing theory, with a focus on Markovian queueing systems and also explores advanced queueing theory, queueing networks, and approximations of queueing networks Part III focuses on graphical models, presenting an introduction to graph theory along with Bayesian, Boolean, and random networks The author presents the material in a self-contained style that helps readers apply the presented methods and techniques to science and engineering applications. Numerous practical examples are also provided throughout, including all related mathematical details. Featuring basic results without heavy emphasis on proving theorems, Fundamentals of Stochastic Networks is a suitable book for courses on probability and stochastic networks, stochastic network calculus, and stochastic network optimization at the upper-undergraduate and graduate levels. The book also serves as a reference for researchers and network professionals who would like to learn more about the general principles of stochastic networks.

Variational Methods for Engineers with Matlab

Eduardo Souza de Cursi

This book is issued from a 30 years’ experience on the presentation of variational methods to successive generations of students and researchers in Engineering. It gives a comprehensive, pedagogical and engineer-oriented presentation of the foundations of variational methods and of their use in numerical problems of Engineering. Particular applications to linear and nonlinear systems of equations, differential equations, optimization and control are presented. MATLAB programs illustrate the implementation and make the book suitable as a textbook and for self-study. The evolution of knowledge, of the engineering studies and of the society in general has led to a change of focus from students and researchers. New generations of students and researchers do not have the same relations to mathematics as the previous ones. In the particular case of variational methods, the presentations used in the past are not adapted to the previous knowledge, the language and the centers of interest of the new generations. Since these methods remain a core knowledge – thus essential – in many fields (Physics, Engineering, Applied Mathematics, Economics, Image analysis …), a new presentation is necessary in order to address variational methods to the actual context.

Mathematical Game Theory and Applications

Vladimir Mazalov

An authoritative and quantitative approach to modern game theory with applications from economics, political science, military science, and finance Mathematical Game Theory combines both the theoretical and mathematical foundations of game theory with a series of complex applications along with topics presented in a logical progression to achieve a unified presentation of research results. This book covers topics such as two-person games in strategic form, zero-sum games, N-person non-cooperative games in strategic form, two-person games in extensive form, parlor and sport games, bargaining theory, best-choice games, cooperative games and dynamic games. Several classical models used in economics are presented which include Cournot, Bertrand, Hotelling, and Stackelberg as well as coverage of modern branches of game theory such as negotiation models, potential games, parlor games, and best choice games. Mathematical Game Theory: • Presents a good balance of both theoretical foundations and complex applications of game theory. • Features an in-depth analysis of parlor and sport games, networking games, and bargaining models. • Provides fundamental results in new branches of game theory, best choice games, network games, and dynamic games. • Presents numerous examples and exercises along with detailed solutions at the end of each chapter. • Is supported by an accompanying website featuring course slides and lecture content. Covering a host of important topics, this book provides a research springboard for graduate students and a reference for researchers who might be working in the areas of applied mathematics, operations research, computer science, or economical cybernetics.

Statistics for Exercise Science and Health with Microsoft Office Excel

J. Verma P.

This book introduces the use of statistics to solve a variety of problems in exercise science and health and provides readers with a solid foundation for future research and data analysis. Statistics for Exercise Science and Health with Microsoft Office Excel: Aids readers in analyzing their own data using the presented statistical techniques combined with Excel Features comprehensive coverage of hypothesis testing and regression models to facilitate modeling in sports science Utilizes Excel to enhance reader competency in data analysis and experimental designs Includes coverage of both binomial and poison distributions with applications in exercise science and health Provides solved examples and plentiful practice exercises throughout in addition to case studies to illustrate the discussed analytical techniques Contains all needed definitions and formulas to aid readers in understanding different statistical concepts and developing the needed skills to solve research problems

Solutions Manual to accompany An Introduction to Numerical Methods and Analysis

James Epperson F.

A solutions manual to accompany An Introduction to Numerical Methods and Analysis, Second Edition An Introduction to Numerical Methods and Analysis, Second Edition reflects the latest trends in the field, includes new material and revised exercises, and offers a unique emphasis on applications. The author clearly explains how to both construct and evaluate approximations for accuracy and performance, which are key skills in a variety of fields. A wide range of higher-level methods and solutions, including new topics such as the roots of polynomials, spectral collocation, finite element ideas, and Clenshaw-Curtis quadrature, are presented from an introductory perspective, and theSecond Edition also features: Chapters and sections that begin with basic, elementary material followed by gradual coverage of more advanced material Exercises ranging from simple hand computations to challenging derivations and minor proofs to programming exercises Widespread exposure and utilization of MATLAB® An appendix that contains proofs of various theorems and other material