Математика

Различные книги в жанре Математика

Simulation and the Monte Carlo Method

Группа авторов

This book provides the first simultaneous coverage of the statistical aspects of simulation and Monte Carlo methods, their commonalities and their differences for the solution of a wide spectrum of engineering and scientific problems. It contains standard material usually considered in Monte Carlo simulation as well as new material such as variance reduction techniques, regenerative simulation, and Monte Carlo optimization.

Applications of Statistics to Industrial Experimentation

Группа авторов

Other volumes in the Wiley Series in Probability and Mathematical Statistics, Ralph A. Bradley, J. Stuart Hunter, David G. Kendall, & Geoffrey S. Watson, Advisory Editors Statistical Models in Applied Science Karl V. Bury Of direct interest to engineers and applied scientists, this book presents general principles of statistics and specific distribution methods and models. Prominent distribution properties and methods that are useful over a wide range of applications are covered in detail. The strengths and weaknesses of the distributional models are fully described, giving the reader a firm, intuitive approach to the selection of the model most appropriate to the problem at hand. 1975 656 pp. Fitting Equations To Data Computer Analysis of Multifactor Data for Scientists and Engineers Cuthbert Daniel & Fred S. Wood With the assistance of John W. Gorman The purpose of this book is to help the serious data analyst, scientist, or engineer with a computer to: recognize the strengths and limitations of his data; test the assumptions implicit in the least squares methods used to fit the data; select appropriate forms of the variables; judge which combinations of variables are most influential; and state the conditions under which the fitted equations are applicable. Throughout, mathematics is kept at the level of college algebra. 1971 342 pp. Methods for Statistical Analysis of Reliability And Life Data Nancy R. Mann, Ray E. Schafer & Nozer D. Singpurwalla This book introduces failure models commonly used in reliability analysis, and presents the most useful methods for analyzing the life data of these models. Highlights include: material on accelerated life testing; a comprehensive treatment of estimation and hypothesis testing; a critical survey of methods for system-reliability confidence bonds; and methods for simulation of life data and for testing fit. 1974 564 pp.

Linear Statistical Inference and its Applications

Группа авторов

C. R. Rao would be found in almost any statistician's list of five outstanding workers in the world of Mathematical Statistics today. His book represents a comprehensive account of the main body of results that comprise modern statistical theory. -W. G. Cochran «[C. R. Rao is] one of the pioneers who laid the foundations of statistics which grew from ad hoc origins into a firmly grounded mathematical science.» -B. Efrom Translated into six major languages of the world, C. R. Rao's Linear Statistical Inference and Its Applications is one of the foremost works in statistical inference in the literature. Incorporating the important developments in the subject that have taken place in the last three decades, this paperback reprint of his classic work on statistical inference remains highly applicable to statistical analysis. Presenting the theory and techniques of statistical inference in a logically integrated and practical form, it covers: * The algebra of vectors and matrices * Probability theory, tools, and techniques * Continuous probability models * The theory of least squares and the analysis of variance * Criteria and methods of estimation * Large sample theory and methods * The theory of statistical inference * Multivariate normal distribution Written for the student and professional with a basic knowledge of statistics, this practical paperback edition gives this industry standard new life as a key resource for practicing statisticians and statisticians-in-training.

Simulation and the Monte Carlo Method

Dirk Kroese P.

This accessible new edition explores the major topics in Monte Carlo simulation Simulation and the Monte Carlo Method, Second Edition reflects the latest developments in the field and presents a fully updated and comprehensive account of the major topics that have emerged in Monte Carlo simulation since the publication of the classic First Edition over twenty-five years ago. While maintaining its accessible and intuitive approach, this revised edition features a wealth of up-to-date information that facilitates a deeper understanding of problem solving across a wide array of subject areas, such as engineering, statistics, computer science, mathematics, and the physical and life sciences. The book begins with a modernized introduction that addresses the basic concepts of probability, Markov processes, and convex optimization. Subsequent chapters discuss the dramatic changes that have occurred in the field of the Monte Carlo method, with coverage of many modern topics including: Markov Chain Monte Carlo Variance reduction techniques such as the transform likelihood ratio method and the screening method The score function method for sensitivity analysis The stochastic approximation method and the stochastic counter-part method for Monte Carlo optimization The cross-entropy method to rare events estimation and combinatorial optimization Application of Monte Carlo techniques for counting problems, with an emphasis on the parametric minimum cross-entropy method An extensive range of exercises is provided at the end of each chapter, with more difficult sections and exercises marked accordingly for advanced readers. A generous sampling of applied examples is positioned throughout the book, emphasizing various areas of application, and a detailed appendix presents an introduction to exponential families, a discussion of the computational complexity of stochastic programming problems, and sample MATLAB programs. Requiring only a basic, introductory knowledge of probability and statistics, Simulation and the Monte Carlo Method, Second Edition is an excellent text for upper-undergraduate and beginning graduate courses in simulation and Monte Carlo techniques. The book also serves as a valuable reference for professionals who would like to achieve a more formal understanding of the Monte Carlo method.

Models for Probability and Statistical Inference

Группа авторов

This concise, yet thorough, book is enhanced with simulations and graphs to build the intuition of readers Models for Probability and Statistical Inference was written over a five-year period and serves as a comprehensive treatment of the fundamentals of probability and statistical inference. With detailed theoretical coverage found throughout the book, readers acquire the fundamentals needed to advance to more specialized topics, such as sampling, linear models, design of experiments, statistical computing, survival analysis, and bootstrapping. Ideal as a textbook for a two-semester sequence on probability and statistical inference, early chapters provide coverage on probability and include discussions of: discrete models and random variables; discrete distributions including binomial, hypergeometric, geometric, and Poisson; continuous, normal, gamma, and conditional distributions; and limit theory. Since limit theory is usually the most difficult topic for readers to master, the author thoroughly discusses modes of convergence of sequences of random variables, with special attention to convergence in distribution. The second half of the book addresses statistical inference, beginning with a discussion on point estimation and followed by coverage of consistency and confidence intervals. Further areas of exploration include: distributions defined in terms of the multivariate normal, chi-square, t, and F (central and non-central); the one- and two-sample Wilcoxon test, together with methods of estimation based on both; linear models with a linear space-projection approach; and logistic regression. Each section contains a set of problems ranging in difficulty from simple to more complex, and selected answers as well as proofs to almost all statements are provided. An abundant amount of figures in addition to helpful simulations and graphs produced by the statistical package S-Plus(r) are included to help build the intuition of readers.

Envisioning the Survey Interview of the Future

Michael Schober F.

Praise forEnvisioning the Survey Interview of the Future «This book is an excellent introduction to some brave new technologies . . . and their possible impacts on the way surveys might be conducted. Anyone interested in the future of survey methodology should read this book.» -Norman M. Bradburn, PhD, National Opinion Research Center, University of Chicago «Envisioning the Survey Interview of the Future gathers some of the brightest minds in alternative methods of gathering self-report data, with an eye toward the future self-report sample survey. Conrad and Schober, by assembling a group of talented survey researchers and creative inventors of new software-based tools to gather information from human subjects, have created a volume of importance to all interested in imagining future ways of interviewing.» -Robert M. Groves, PhD, Survey Research Center, University of Michigan This collaboration provides extensive insight into the impact of communication technology on survey research As previously unimaginable communication technologies rapidly become commonplace, survey researchers are presented with both opportunities and obstacles when collecting and interpreting data based on human response. Envisioning the Survey Interview of the Future explores the increasing influence of emerging technologies on the data collection process and, in particular, self-report data collection in interviews, providing the key principles for using these new modes of communication. With contributions written by leading researchers in the fields of survey methodology and communication technology, this compilation integrates the use of modern technological developments with established social science theory. The book familiarizes readers with these new modes of communication by discussing the challenges to accuracy, legitimacy, and confidentiality that researchers must anticipate while collecting data, and it also provides tools for adopting new technologies in order to obtain high-quality results with minimal error or bias. Envisioning the Survey Interview of the Future addresses questions that researchers in survey methodology and communication technology must consider, such as: How and when should new communication technology be adopted in the interview process? What are the principles that extend beyond particular technologies? Why do respondents answer questions from a computer differently than questions from a human interviewer? How can systems adapt to respondents' thinking and feeling? What new ethical concerns about privacy and confidentiality are raised from using new communication technologies? With its multidisciplinary approach, extensive discussion of existing and future technologies, and practical guidelines for adopting new technology, Envisioning the Survey Interview of the Future is an essential resource for survey methodologists, questionnaire designers, and communication technologists in any field that conducts survey research. It also serves as an excellent supplement for courses in research methods at the upper-undergraduate or graduate level.

Management of Data in Clinical Trials

Группа авторов

A valuable new edition of the trusted, practical guide to managing data in clinical trials Regardless of size, type, or complexity, accurate results for any clinical trial are ultimately determined by the quality of the collected data. Management of Data in Clinical Trials, Second Edition explores data management and trial organization as the keys to developing an accurate and reliable clinical trial. With a focus on the traditional aspects of data collection as well as recent advances in technology, this new edition provides a complete and accessible guide to the management structure of a clinical trial, from planning and development to design and analysis. Practical approaches that result in the collection of complete and timely data are also provided. While maintaining a comprehensive overview of the knowledge and tools that are essential for the organization of a modern clinical trial, the author has expanded the topical coverage in the Second Edition to reflect the possible uses of recent advances in technology in the data collection process. In addition, the Second Edition discusses the impact of international regulations governing the conduct of clinical trials and provides guidelines on ensuring compliance with national requirements. Newly featured topics include: The growing availability of «off-the-shelf» solutions for clinical trials Potential models for collaboration in the conduct of clinical trials between academia and the pharmaceutical industry The increasing use of the Internet in the collection of data and management of trials Regulatory requirements worldwide and compliance with the ICH Good Clinical Practice (GCP) Guidelines Development of Standard Operating Procedures for the conduct of clinical trials Complete with chapter summaries that reinforce key points as well as over one hundred examples, Management of Data in Clinical Trials, Second Edition is an ideal resource for practitioners in the clinical research community who are involved in the development of clinical trials, including data managers, research associates, data coordinators, physicians, and statisticians. This book also serves as an excellent supplemental text for courses in clinical trials at both the undergraduate and graduate levels.

Statistical Advances in the Biomedical Sciences

Atanu Biswas

The Most Comprehensive and Cutting-Edge Guide to Statistical Applications in Biomedical Research With the increasing use of biotechnology in medical research and the sophisticated advances in computing, it has become essential for practitioners in the biomedical sciences to be fully educated on the role statistics plays in ensuring the accurate analysis of research findings. Statistical Advances in the Biomedical Sciences explores the growing value of statistical knowledge in the management and comprehension of medical research and, more specifically, provides an accessible introduction to the contemporary methodologies used to understand complex problems in the four major areas of modern-day biomedical science: clinical trials, epidemiology, survival analysis, and bioinformatics. Composed of contributions from eminent researchers in the field, this volume discusses the application of statistical techniques to various aspects of modern medical research and illustrates how these methods ultimately prove to be an indispensable part of proper data collection and analysis. A structural uniformity is maintained across all chapters, each beginning with an introduction that discusses general concepts and the biomedical problem under focus and is followed by specific details on the associated methods, algorithms, and applications. In addition, each chapter provides a summary of the main ideas and offers a concluding remarks section that presents novel ideas, approaches, and challenges for future research. Complete with detailed references and insight on the future directions of biomedical research, Statistical Advances in the Biomedical Sciences provides vital statistical guidance to practitioners in the biomedical sciences while also introducing statisticians to new, multidisciplinary frontiers of application. This text is an excellent reference for graduate- and PhD-level courses in various areas of biostatistics and the medical sciences and also serves as a valuable tool for medical researchers, statisticians, public health professionals, and biostatisticians.

Data Mining Using SAS Enterprise Miner

Группа авторов

The most thorough and up-to-date introduction to data mining techniques using SAS Enterprise Miner. The Sample, Explore, Modify, Model, and Assess (SEMMA) methodology of SAS Enterprise Miner is an extremely valuable analytical tool for making critical business and marketing decisions. Until now, there has been no single, authoritative book that explores every node relationship and pattern that is a part of the Enterprise Miner software with regard to SEMMA design and data mining analysis. Data Mining Using SAS Enterprise Miner introduces readers to a wide variety of data mining techniques and explains the purpose of-and reasoning behind-every node that is a part of the Enterprise Miner software. Each chapter begins with a short introduction to the assortment of statistics that is generated from the various nodes in SAS Enterprise Miner v4.3, followed by detailed explanations of configuration settings that are located within each node. Features of the book include: The exploration of node relationships and patterns using data from an assortment of computations, charts, and graphs commonly used in SAS procedures A step-by-step approach to each node discussion, along with an assortment of illustrations that acquaint the reader with the SAS Enterprise Miner working environment Descriptive detail of the powerful Score node and associated SAS code, which showcases the important of managing, editing, executing, and creating custom-designed Score code for the benefit of fair and comprehensive business decision-making Complete coverage of the wide variety of statistical techniques that can be performed using the SEMMA nodes An accompanying Web site that provides downloadable Score code, training code, and data sets for further implementation, manipulation, and interpretation as well as SAS/IML software programming code This book is a well-crafted study guide on the various methods employed to randomly sample, partition, graph, transform, filter, impute, replace, cluster, and process data as well as interactively group and iteratively process data while performing a wide variety of modeling techniques within the process flow of the SAS Enterprise Miner software. Data Mining Using SAS Enterprise Miner is suitable as a supplemental text for advanced undergraduate and graduate students of statistics and computer science and is also an invaluable, all-encompassing guide to data mining for novice statisticians and experts alike.

The Construction of Optimal Stated Choice Experiments

Leonie Burgess

The most comprehensive and applied discussion of stated choice experiment constructions available The Construction of Optimal Stated Choice Experiments provides an accessible introduction to the construction methods needed to create the best possible designs for use in modeling decision-making. Many aspects of the design of a generic stated choice experiment are independent of its area of application, and until now there has been no single book describing these constructions. This book begins with a brief description of the various areas where stated choice experiments are applicable, including marketing and health economics, transportation, environmental resource economics, and public welfare analysis. The authors focus on recent research results on the construction of optimal and near-optimal choice experiments and conclude with guidelines and insight on how to properly implement these results. Features of the book include: Construction of generic stated choice experiments for the estimation of main effects only, as well as experiments for the estimation of main effects plus two-factor interactions Constructions for choice sets of any size and for attributes with any number of levels A discussion of designs that contain a none option or a common base option Practical techniques for the implementation of the constructions Class-tested material that presents theoretical discussion of optimal design Complete and extensive references to the mathematical and statistical literature for the constructions Exercise sets in most chapters, which reinforce the understanding of the presented material The Construction of Optimal Stated Choice Experiments serves as an invaluable reference guide for applied statisticians and practitioners in the areas of marketing, health economics, transport, and environmental evaluation. It is also ideal as a supplemental text for courses in the design of experiments, decision support systems, and choice models. A companion web site is available for readers to access web-based software that can be used to implement the constructions described in the book.