Research in the statistical analysis of extreme values has flourished over the past decade: new probability models, inference and data analysis techniques have been introduced; and new application areas have been explored. Statistics of Extremes comprehensively covers a wide range of models and application areas, including risk and insurance: a major area of interest and relevance to extreme value theory. Case studies are introduced providing a good balance of theory and application of each model discussed, incorporating many illustrated examples and plots of data. The last part of the book covers some interesting advanced topics, including time series, regression, multivariate and Bayesian modelling of extremes, the use of which has huge potential.
Environmental statistics is a rapidly growing field, supported by advances in digital computing power, automated data collection systems, and interactive, linkable Internet software. Concerns over public and ecological health and the continuing need to support environmental policy-making and regulation have driven a concurrent explosion in environmental data analysis. This textbook is designed to address the need for trained professionals in this area. The book is based on a course which the authors have taught for many years, and prepares students for careers in environmental analysis centered on statistics and allied quantitative methods of data evaluation. The text extends beyond the introductory level, allowing students and environmental science practitioners to develop the expertise to design and perform sophisticated environmental data analyses. In particular, it: Provides a coherent introduction to intermediate and advanced methods for modeling and analyzing environmental data. Takes a data-oriented approach to describing the various methods. Illustrates the methods with real-world examples Features extensive exercises, enabling use as a course text. Includes examples of SAS computer code for implementation of the statistical methods. Connects to a Web site featuring solutions to exercises, extra computer code, and additional material. Serves as an overview of methods for analyzing environmental data, enabling use as a reference text for environmental science professionals. Graduate students of statistics studying environmental data analysis will find this invaluable as will practicing data analysts and environmental scientists including specialists in atmospheric science, biology and biomedicine, chemistry, ecology, environmental health, geography, and geology.
Interest in microarrays has increased considerably in the last ten years. This increase in the use of microarray technology has led to the need for good standards of microarray experimental notation, data representation, and the introduction of standard experimental controls, as well as standard data normalization and analysis techniques. Statistics for Microarrays: Design, Analysis and Inference is the first book that presents a coherent and systematic overview of statistical methods in all stages in the process of analysing microarray data – from getting good data to obtaining meaningful results. Provides an overview of statistics for microarrays, including experimental design, data preparation, image analysis, normalization, quality control, and statistical inference. Features many examples throughout using real data from microarray experiments. Computational techniques are integrated into the text. Takes a very practical approach, suitable for statistically-minded biologists. Supported by a Website featuring colour images, software, and data sets. Primarily aimed at statistically-minded biologists, bioinformaticians, biostatisticians, and computer scientists working with microarray data, the book is also suitable for postgraduate students of bioinformatics.
Learn how to develop your reasoning skills and how to write well-reasoned proofs Learning to Reason shows you how to use the basic elements of mathematical language to develop highly sophisticated, logical reasoning skills. You'll get clear, concise, easy-to-follow instructions on the process of writing proofs, including the necessary reasoning techniques and syntax for constructing well-written arguments. Through in-depth coverage of logic, sets, and relations, Learning to Reason offers a meaningful, integrated view of modern mathematics, cuts through confusing terms and ideas, and provides a much-needed bridge to advanced work in mathematics as well as computer science. Original, inspiring, and designed for maximum comprehension, this remarkable book: * Clearly explains how to write compound sentences in equivalent forms and use them in valid arguments * Presents simple techniques on how to structure your thinking and writing to form well-reasoned proofs * Reinforces these techniques through a survey of sets–the building blocks of mathematics * Examines the fundamental types of relations, which is «where the action is» in mathematics * Provides relevant examples and class-tested exercises designed to maximize the learning experience * Includes a mind-building game/exercise space at www.wiley.com/products/subject/mathematics/
A thorough, accessible, and rigorous presentation of the central theorems of mathematical logic . . . ideal for advanced students of mathematics, computer science, and logic Logic of Mathematics combines a full-scale introductory course in mathematical logic and model theory with a range of specially selected, more advanced theorems. Using a strict mathematical approach, this is the only book available that contains complete and precise proofs of all of these important theorems: * Gödel's theorems of completeness and incompleteness * The independence of Goodstein's theorem from Peano arithmetic * Tarski's theorem on real closed fields * Matiyasevich's theorem on diophantine formulas Logic of Mathematics also features: * Full coverage of model theoretical topics such as definability, compactness, ultraproducts, realization, and omission of types * Clear, concise explanations of all key concepts, from Boolean algebras to Skolem-Löwenheim constructions and other topics * Carefully chosen exercises for each chapter, plus helpful solution hints At last, here is a refreshingly clear, concise, and mathematically rigorous presentation of the basic concepts of mathematical logic-requiring only a standard familiarity with abstract algebra. Employing a strict mathematical approach that emphasizes relational structures over logical language, this carefully organized text is divided into two parts, which explain the essentials of the subject in specific and straightforward terms. Part I contains a thorough introduction to mathematical logic and model theory-including a full discussion of terms, formulas, and other fundamentals, plus detailed coverage of relational structures and Boolean algebras, Gödel's completeness theorem, models of Peano arithmetic, and much more. Part II focuses on a number of advanced theorems that are central to the field, such as Gödel's first and second theorems of incompleteness, the independence proof of Goodstein's theorem from Peano arithmetic, Tarski's theorem on real closed fields, and others. No other text contains complete and precise proofs of all of these theorems. With a solid and comprehensive program of exercises and selected solution hints, Logic of Mathematics is ideal for classroom use-the perfect textbook for advanced students of mathematics, computer science, and logic.
An authoritative, full-year course on both group theory and ordinary character theory–essential tools for mathematics and the physical sciences One of the few treatments available combining both group theory and character theory, Groups and Characters is an effective general textbook on these two fundamentally connected subjects. Presuming only a basic knowledge of abstract algebra as in a first-year graduate course, the text opens with a review of background material and then guides readers carefully through several of the most important aspects of groups and characters, concentrating mainly on finite groups. Challenging yet accessible, Groups and Characters features: * An extensive collection of examples surveying many different types of groups, including Sylow subgroups of symmetric groups, affine groups of fields, the Mathieu groups, and symplectic groups * A thorough, easy-to-follow discussion of Polya-Redfield enumeration, with applications to combinatorics * Inclusive explorations of the transfer function and normal complements, induction and restriction of characters, Clifford theory, characters of symmetric and alternating groups, Frobenius groups, and the Schur index * Illuminating accounts of several computational aspects of group theory, such as the Schreier-Sims algorithm, Todd-Coxeter coset enumeration, and algorithms for generating character tables As valuable as Groups and Characters will prove as a textbook for mathematicians, it has broader applications. With chapters suitable for use as independent review units, along with a full bibliography and index, it will be a dependable general reference for chemists, physicists, and crystallographers.
Contains a wealth of information previously scattered in research journals, conference proceedings and technical reports. Identifies more than 200 unsolved problems. Every problem is stated in a self-contained, extremely accessible format, followed by comments on its history, related results and literature. The book will stimulate research and help avoid efforts on solving already settled problems. Each chapter concludes with a comprehensive list of references which will lead readers to original sources, important contributions and other surveys.
A practical, accessible introduction to advanced geometry Exceptionally well-written and filled with historical and bibliographic notes, Methods of Geometry presents a practical and proof-oriented approach. The author develops a wide range of subject areas at an intermediate level and explains how theories that underlie many fields of advanced mathematics ultimately lead to applications in science and engineering. Foundations, basic Euclidean geometry, and transformations are discussed in detail and applied to study advanced plane geometry, polyhedra, isometries, similarities, and symmetry. An excellent introduction to advanced concepts as well as a reference to techniques for use in independent study and research, Methods of Geometry also features: Ample exercises designed to promote effective problem-solving strategies Insight into novel uses of Euclidean geometry More than 300 figures accompanying definitions and proofs A comprehensive and annotated bibliography Appendices reviewing vector and matrix algebra, least upper bound principle, and equivalence relations An Instructor's Manual presenting detailed solutions to all the problems in the book is available upon request from the Wiley editorial department.
The first comprehensive review of the theory and practice of one of today's most powerful optimization techniques. The explosive growth of research into and development of interior point algorithms over the past two decades has significantly improved the complexity of linear programming and yielded some of today's most sophisticated computing techniques. This book offers a comprehensive and thorough treatment of the theory, analysis, and implementation of this powerful computational tool. Interior Point Algorithms provides detailed coverage of all basic and advanced aspects of the subject. Beginning with an overview of fundamental mathematical procedures, Professor Yinyu Ye moves swiftly on to in-depth explorations of numerous computational problems and the algorithms that have been developed to solve them. An indispensable text/reference for students and researchers in applied mathematics, computer science, operations research, management science, and engineering, Interior Point Algorithms: * Derives various complexity results for linear and convex programming * Emphasizes interior point geometry and potential theory * Covers state-of-the-art results for extension, implementation, and other cutting-edge computational techniques * Explores the hottest new research topics, including nonlinear programming and nonconvex optimization.
An «applications first» approach to discrete wavelet transformations Discrete Wavelet Transformations provides readers with a broad elementary introduction to discrete wavelet transformations and their applications. With extensive graphical displays, this self-contained book integrates concepts from calculus and linear algebra into the construction of wavelet transformations and their various applications, including data compression, edge detection in images, and signal and image denoising. The book begins with a cursory look at wavelet transformation development and illustrates its allure in digital signal and image applications. Next, a chapter on digital image basics, quantitative and qualitative measures, and Huffman coding equips readers with the tools necessary to develop a comprehensive understanding of the applications. Subsequent chapters discuss the Fourier series, convolution, and filtering, as well as the Haar wavelet transform to introduce image compression and image edge detection. The development of Daubechies filtersis presented in addition to coverage of wavelet shrinkage in the area of image and signal denoising. The book concludes with the construction of biorthogonal filters and also describes their incorporation in the JPEG2000 image compression standard. The author's «applications first» approach promotes a hands-on treatment of wavelet transforma-tion construction, and over 400 exercises are presented in a multi-part format that guide readers through the solution to each problem. Over sixty computer labs and software development projects provide opportunities for readers to write modules and experiment with the ideas discussed throughout the text. The author's software package, DiscreteWavelets, is used to perform various imaging and audio tasks, compute wavelet transformations and inverses, and visualize the output of the computations. Supplementary material is also available via the book's related Web site, which includes an audio and video repository, final project modules, and softwarefor reproducing examples from the book. All software, including the DiscreteWavelets package, is available for use with Mathematica®, MATLAB®, and Maple. Discrete Wavelet Transformations strongly reinforces the use of mathematics in digital data applications, sharpens programming skills, and provides a foundation for further study of more advanced topics, such as real analysis. This book is ideal for courses on discrete wavelet transforms and their applications at the undergraduate level and also serves as an excellent reference for mathematicians, engineers, and scientists who wish to learn about discrete wavelet transforms at an elementary level.