Consists of invited papers, from internationally recognized researchers, chosen for their quality as well as their overall unity. Describes current methods along with innovative research and presents new technologies for solving problems unique to establishment surveys. Stages of the survey process are addressed in the first five parts with cross-cutting topics in the last section.
The most comprehensive, single-volume guide to conducting experiments with mixtures «If one is involved, or heavily interested, in experiments on mixtures of ingredients, one must obtain this book. It is, as was the first edition, the definitive work.» -Short Book Reviews (Publication of the International Statistical Institute) «The text contains many examples with worked solutions and with its extensive coverage of the subject matter will prove invaluable to those in the industrial and educational sectors whose work involves the design and analysis of mixture experiments.» -Journal of the Royal Statistical Society «The author has done a great job in presenting the vital information on experiments with mixtures in a lucid and readable style. . . . A very informative, interesting, and useful book on an important statistical topic.» -Zentralblatt fur Mathematik und Ihre Grenzgebiete Experiments with Mixtures shows researchers and students how to design and set up mixture experiments, then analyze the data and draw inferences from the results. Virtually every technique that has appeared in the literature of mixtures can be found here, and computing formulas for each method are provided with completely worked examples. Almost all of the numerical examples are taken from real experiments. Coverage begins with Scheffe lattice designs, introducing the use of independent variables, and ends with the most current methods. New material includes: * Multiple response cases * Residuals and least-squares estimates * Categories of components: Mixtures of mixtures * Fixed as well as variable values for the major component proportions * Leverage and the Hat Matrix * Fitting a slack-variable model * Estimating components of variances in a mixed model using ANOVA table entries * Clarification of blocking mates and choice of mates * Optimizing several responses simultaneously * Biplots for multiple responses
An effective technique for data analysis in the social sciences The recent explosion in longitudinal data in the social sciences highlights the need for this timely publication. Latent Curve Models: A Structural Equation Perspective provides an effective technique to analyze latent curve models (LCMs). This type of data features random intercepts and slopes that permit each case in a sample to have a different trajectory over time. Furthermore, researchers can include variables to predict the parameters governing these trajectories. The authors synthesize a vast amount of research and findings and, at the same time, provide original results. The book analyzes LCMs from the perspective of structural equation models (SEMs) with latent variables. While the authors discuss simple regression-based procedures that are useful in the early stages of LCMs, most of the presentation uses SEMs as a driving tool. This cutting-edge work includes some of the authors' recent work on the autoregressive latent trajectory model, suggests new models for method factors in multiple indicators, discusses repeated latent variable models, and establishes the identification of a variety of LCMs. This text has been thoroughly class-tested and makes extensive use of pedagogical tools to aid readers in mastering and applying LCMs quickly and easily to their own data sets. Key features include: Chapter introductions and summaries that provide a quick overview of highlights Empirical examples provided throughout that allow readers to test their newly found knowledge and discover practical applications Conclusions at the end of each chapter that stress the essential points that readers need to understand for advancement to more sophisticated topics Extensive footnoting that points the way to the primary literature for more information on particular topics With its emphasis on modeling and the use of numerous examples, this is an excellent book for graduate courses in latent trajectory models as well as a supplemental text for courses in structural modeling. This book is an excellent aid and reference for researchers in quantitative social and behavioral sciences who need to analyze longitudinal data.
The Wiley Classics Library consists of selected books that have become recognized classics in their respective fields. With these new unabridged and inexpensive editions, Wiley hopes to extend the life of these important works by making them available to future generations of mathematicians and scientists.
This latest edition of Coloring of Plastics: Fundamentals offers an updated introduction to color as a science while also providing the foundation for many additional technological subjects. The basic families of colorants are described, along with their properties. The material examines how statistical analysis can improve the consistency of colored polymer production runs as well as the colorants used to match the color. Other important topics covered in Coloring of Plastics: Fundamentals, Second Edition include: Environmental issues and the reuse of discarded material Potential problems with the interaction between colorants and other additives Measurement information and matching, visually and instrumentally Techniques for incorporating colorants into polymers as compounds or concentrates Special effect colorants Polymer and colorant manufacturers, plastics compounders, and coating and synthetic fiber industries will acquire an enhanced appreciation of the complex technological issues a colorist must consider if a plastics coloring project is to succeed.
This Set Contains: Continuous Multivariate Distributions, Volume 1, Models and Applications, 2nd Edition by Samuel Kotz, N. Balakrishnan and Normal L. Johnson Continuous Univariate Distributions, Volume 1, 2nd Edition by Samuel Kotz, N. Balakrishnan and Normal L. Johnson Continuous Univariate Distributions, Volume 2, 2nd Edition by Samuel Kotz, N. Balakrishnan and Normal L. Johnson Discrete Multivariate Distributions by Samuel Kotz, N. Balakrishnan and Normal L. Johnson Univariate Discrete Distributions, 3rd Edition by Samuel Kotz, N. Balakrishnan and Normal L. Johnson Discover the latest advances in discrete distributions theory The Third Edition of the critically acclaimed Univariate Discrete Distributions provides a self-contained, systematic treatment of the theory, derivation, and application of probability distributions for count data. Generalized zeta-function and q-series distributions have been added and are covered in detail. New families of distributions, including Lagrangian-type distributions, are integrated into this thoroughly revised and updated text. Additional applications of univariate discrete distributions are explored to demonstrate the flexibility of this powerful method. A thorough survey of recent statistical literature draws attention to many new distributions and results for the classical distributions. Approximately 450 new references along with several new sections are introduced to reflect the current literature and knowledge of discrete distributions. Beginning with mathematical, probability, and statistical fundamentals, the authors provide clear coverage of the key topics in the field, including: Families of discrete distributions Binomial distribution Poisson distribution Negative binomial distribution Hypergeometric distributions Logarithmic and Lagrangian distributions Mixture distributions Stopped-sum distributions Matching, occupancy, runs, and q-series distributions Parametric regression models and miscellanea Emphasis continues to be placed on the increasing relevance of Bayesian inference to discrete distribution, especially with regard to the binomial and Poisson distributions. New derivations of discrete distributions via stochastic processes and random walks are introduced without unnecessarily complex discussions of stochastic processes. Throughout the Third Edition, extensive information has been added to reflect the new role of computer-based applications. With its thorough coverage and balanced presentation of theory and application, this is an excellent and essential reference for statisticians and mathematicians.
An up-to-date, comprehensive account of major issues in finite mixture modeling This volume provides an up-to-date account of the theory and applications of modeling via finite mixture distributions. With an emphasis on the applications of mixture models in both mainstream analysis and other areas such as unsupervised pattern recognition, speech recognition, and medical imaging, the book describes the formulations of the finite mixture approach, details its methodology, discusses aspects of its implementation, and illustrates its application in many common statistical contexts. Major issues discussed in this book include identifiability problems, actual fitting of finite mixtures through use of the EM algorithm, properties of the maximum likelihood estimators so obtained, assessment of the number of components to be used in the mixture, and the applicability of asymptotic theory in providing a basis for the solutions to some of these problems. The author also considers how the EM algorithm can be scaled to handle the fitting of mixture models to very large databases, as in data mining applications. This comprehensive, practical guide: * Provides more than 800 references-40% published since 1995 * Includes an appendix listing available mixture software * Links statistical literature with machine learning and pattern recognition literature * Contains more than 100 helpful graphs, charts, and tables Finite Mixture Models is an important resource for both applied and theoretical statisticians as well as for researchers in the many areas in which finite mixture models can be used to analyze data.
Praise for the Second Edition «Statistics for Research has other fine qualities besides superior organization. The examples and the statistical methods are laid out with unusual clarity by the simple device of using special formats for each. The book was written with great care and is extremely user-friendly.»—The UMAP Journal Although the goals and procedures of statistical research have changed little since the Second Edition of Statistics for Research was published, the almost universal availability of personal computers and statistical computing application packages have made it possible for today's statisticians to do more in less time than ever before. The Third Edition of this bestselling text reflects how the changes in the computing environment have transformed the way statistical analyses are performed today. Based on extensive input from university statistics departments throughout the country, the authors have made several important and timely revisions, including: Additional material on probability appears early in the text New sections on odds ratios, ratio and difference estimations, repeated measure analysis, and logistic regression New examples and exercises, many from the field of the health sciences Printouts of computer analyses on all complex procedures An accompanying Web site illustrating how to use SAS® and JMP® for all procedures The text features the most commonly used statistical techniques for the analysis of research data. As in the earlier editions, emphasis is placed on how to select the proper statistical procedure and how to interpret results. Whenever possible, to avoid using the computer as a «black box» that performs a mysterious process on the data, actual computational procedures are also given. A must for scientists who analyze data, professionals and researchers who need a self-teaching text, and graduate students in statistical methods, Statistics for Research, Third Edition brings the methodology up to date in a very practical and accessible way.
Amstat News asked three review editors to rate their top five favorite books in the September 2003 issue. Categorical Data Analysis was among those chosen. A valuable new edition of a standard reference «A 'must-have' book for anyone expecting to do research and/or applications in categorical data analysis.» –Statistics in Medicine on Categorical Data Analysis, First Edition The use of statistical methods for categorical data has increased dramatically, particularly for applications in the biomedical and social sciences. Responding to new developments in the field as well as to the needs of a new generation of professionals and students, this new edition of the classic Categorical Data Analysis offers a comprehensive introduction to the most important methods for categorical data analysis. Designed for statisticians and biostatisticians as well as scientists and graduate students practicing statistics, Categorical Data Analysis, Second Edition summarizes the latest methods for univariate and correlated multivariate categorical responses. Readers will find a unified generalized linear models approach that connects logistic regression and Poisson and negative binomial regression for discrete data with normal regression for continuous data. Adding to the value in the new edition is coverage of: Three new chapters on methods for repeated measurement and other forms of clustered categorical data, including marginal models and associated generalized estimating equations (GEE) methods, and mixed models with random effects Stronger emphasis on logistic regression modeling of binary and multicategory data An appendix showing the use of SAS for conducting nearly all analyses in the book Prescriptions for how ordinal variables should be treated differently than nominal variables Discussion of exact small-sample procedures More than 100 analyses of real data sets to illustrate application of the methods, and more than 600 exercises An Instructor's Manual presenting detailed solutions to all the problems in the book is available from the Wiley editorial department.
Generalised Least Squares adopts a concise and mathematically rigorous approach. It will provide an up-to-date self-contained introduction to the unified theory of generalized least squares estimations, adopting a concise and mathematically rigorous approach. The book covers in depth the 'lower and upper bounds approach', pioneered by the first author, which is widely regarded as a very powerful and useful tool for generalized least squares estimation, helping the reader develop their understanding of the theory. The book also contains exercises at the end of each chapter and applications to statistics, econometrics, and biometrics, enabling use for self-study or as a course text.