Mathematics of Chance utilizes simple, real-world problems-some of which have only recently been solved-to explain fundamental probability theorems, methods, and statistical reasoning. Jiri Andel begins with a basic introduction to probability theory and its important points before moving on to more specific sections on vital aspects of probability, using both classic and modern problems. Each chapter begins with easy, realistic examples before covering the general formulations and mathematical treatments used. The reader will find ample use for a chapter devoted to matrix games and problem sets concerning waiting, probability calculations, expectation calculations, and statistical methods. A special chapter utilizes problems that relate to areas of mathematics outside of statistics and considers certain mathematical concepts from a probabilistic point of view. Sections and problems cover topics including: * Random walks * Principle of reflection * Probabilistic aspects of records * Geometric distribution * Optimization * The LAD method, and more Knowledge of the basic elements of calculus will be sufficient in understanding most of the material presented here, and little knowledge of pure statistics is required. Jiri Andel has produced a compact reference for applied statisticians working in industry and the social and technical sciences, and a book that suits the needs of students seeking a fundamental understanding of probability theory.
Shape and Shape Theory D. G. Kendall Churchill College, University of Cambridge, UK D. Barden Girton College, University of Cambridge, UK T. K. Carne King's College, University of Cambridge, UK H. Le University of Nottingham, UK The statistical theory of shape is a relatively new topic and is generating a great deal of interest and comment by statisticians, engineers and computer scientists. Mathematically, 'shape' is the geometrical information required to describe an object when location, scale and rotational effects are removed. The theory was pioneered by Professor David Kendall to solve practical problems concerning shape. This text presents an elegant account of the theory of shape that has evolved from Kendall's work. Features include: * A comprehensive account of Kendall's shape spaces * A variety of topological and geometric invariants of these spaces * Emphasis on the mathematical aspects of shape analysis * Coverage of the mathematical issues for a wide range of applications The early chapters provide all the necessary background information, including the history and applications of shape theory. The authors then go on to analyse the topic, in brilliant detail, in a variety of different shape spaces. Kendall's own procedures for visualising distributions of shapes and shape processes are covered at length. Implications from other branches of mathematics are explored, along with more advanced applications, incorporating statistics and stochastic analysis. Applied statisticians, applied mathematicians, engineers and computer scientists working and researching in the fields of archaeology, astronomy, biology, geography and physical chemistry will find this book of great benefit. The theories presented are used today in a wide range of subjects from archaeology through to physics, and will provide fascinating reading to anyone engaged in such research. Visit our web page! http://www.wiley.com/
A one-stop reference to fractional factorials and related orthogonal arrays. Presenting one of the most dynamic areas of statistical research, this book offers a systematic, rigorous, and up-to-date treatment of fractional factorial designs and related combinatorial mathematics. Leading statisticians Aloke Dey and Rahul Mukerjee consolidate vast amounts of material from the professional literature–expertly weaving fractional replication, orthogonal arrays, and optimality aspects. They develop the basic theory of fractional factorials using the calculus of factorial arrangements, thereby providing a unified approach to the study of fractional factorial plans. An indispensable guide for statisticians in research and industry as well as for graduate students, Fractional Factorial Plans features: * Construction procedures of symmetric and asymmetric orthogonal arrays. * Many up-to-date research results on nonexistence. * A chapter on optimal fractional factorials not based on orthogonal arrays. * Trend-free plans, minimum aberration plans, and search and supersaturated designs. * Numerous examples and extensive references.
This fully updated and revised third edition, presents a wide ranging, balanced account of the fundamental issues across the full spectrum of inference and decision-making. Much has happened in this field since the second edition was published: for example, Bayesian inferential procedures have not only gained acceptance but are often the preferred methodology. This book will be welcomed by both the student and practising statistician wishing to study at a fairly elementary level, the basic conceptual and interpretative distinctions between the different approaches, how they interrelate, what assumptions they are based on, and the practical implications of such distinctions. As in earlier editions, the material is set in a historical context to more powerfully illustrate the ideas and concepts. Includes fully updated and revised material from the successful second edition Recent changes in emphasis, principle and methodology are carefully explained and evaluated Discusses all recent major developments Particular attention is given to the nature and importance of basic concepts (probability, utility, likelihood etc) Includes extensive references and bibliography Written by a well-known and respected author, the essence of this successful book remains unchanged providing the reader with a thorough explanation of the many approaches to inference and decision making.
Linear Statistical Models Developed and refined over a period of twenty years, the material in this book offers an especially lucid presentation of linear statistical models. These models lead to what is usually called «multiple regression» or «analysis of variance» methodology, which, in turn, opens up a wide range of applications to the physical, biological, and social sciences, as well as to business, agriculture, and engineering. Unlike similar books on this topic, Linear Statistical Models emphasizes the geometry of vector spaces because of the intuitive insights this approach brings to an understanding of the theory. While the focus is on theory, examples of applications, using the SAS and S-Plus packages, are included. Prerequisites include some familiarity with linear algebra, and probability and statistics at the postcalculus level. Major topics covered include: * Methods of study of random vectors, including the multivariate normal, chi-square, t and F distributions, central and noncentral * The linear model and the basic theory of regression analysis and the analysis of variance * Multiple regression methods, including transformations, analysis of residuals, and asymptotic theory for regression analysis. Separate sections are devoted to robust methods and to the bootstrap. * Simultaneous confidence intervals: Bonferroni, Scheffe, Tukey, and Bechhofer * Analysis of variance, with two- and three-way analysis of variance * Random component models, nested designs, and balanced incomplete block designs * Analysis of frequency data through log-linear models, with emphasis on vector space viewpoint. This chapter alone is sufficient for a course on the analysis of frequency data.
The Wiley-Interscience Paperback Series consists of selected books that have been made more accessible to consumers in an effort to increase global appeal and general circulation. With these new unabridged softcover volumes, Wiley hopes to extend the lives of these works by making them available to future generations of statisticians, mathematicians, and scientists. «This text is unique in bringing together so many results hitherto found only in part in other texts and papers. . . . The text is fairly self-contained, inclusive of some basic mathematical results needed, and provides a rich diet of examples, applications, and exercises. The bibliographical material at the end of each chapter is excellent, not only from a historical perspective, but because it is valuable for researchers in acquiring a good perspective of the MDP research potential.» —Zentralblatt fur Mathematik «. . . it is of great value to advanced-level students, researchers, and professional practitioners of this field to have now a complete volume (with more than 600 pages) devoted to this topic. . . . Markov Decision Processes: Discrete Stochastic Dynamic Programming represents an up-to-date, unified, and rigorous treatment of theoretical and computational aspects of discrete-time Markov decision processes.» —Journal of the American Statistical Association
A hands-on approach to the basic principles of empirical model building. Includes a series of real-world statistical problems illustrating modeling skills and techniques. Covers models of growth and decay, systems where competition and interaction add to the complexity of the model, and discusses both classical and nonclassical data analysis methods.
A comprehensive text and reference bringing together advances in the theory of probability and statistics and relating them to applications. The three major categories of statistical models that relate dependent variables to explanatory variables are covered: univariate regression models, multivariate regression models, and simultaneous equations models. Methods are illustrated with worked examples, complete with figures that display code and output.
The Wiley-Interscience Paperback Series consists of selected books that have been made more accessible to consumers in an effort to increase global appeal and general circulation. With these new unabridged softcover volumes, Wiley hopes to extend the lives of these works by making them available to future generations of statisticians, mathematicians, and scientists. «The effort of Professor Fuller is commendable . . . [the book] provides a complete treatment of an important and frequently ignored topic. Those who work with measurement error models will find it valuable. It is the fundamental book on the subject, and statisticians will benefit from adding this book to their collection or to university or departmental libraries.» -Biometrics «Given the large and diverse literature on measurement error/errors-in-variables problems, Fuller's book is most welcome. Anyone with an interest in the subject should certainly have this book.» -Journal of the American Statistical Association «The author is to be commended for providing a complete presentation of a very important topic. Statisticians working with measurement error problems will benefit from adding this book to their collection.» -Technometrics « . . . this book is a remarkable achievement and the product of impressive top-grade scholarly work.» -Journal of Applied Econometrics Measurement Error Models offers coverage of estimation for situations where the model variables are observed subject to measurement error. Regression models are included with errors in the variables, latent variable models, and factor models. Results from several areas of application are discussed, including recent results for nonlinear models and for models with unequal variances. The estimation of true values for the fixed model, prediction of true values under the random model, model checks, and the analysis of residuals are addressed, and in addition, procedures are illustrated with data drawn from nearly twenty real data sets.
The Wiley Series in Probability and Statistics is a collection of topics of current research interests in both pure and applied statistics and probability developments in the field and classical methods. This series provides essential and invaluable reading for all statisticians, whether in academia, industry, government, or research.