The world of quantitative finance (QF) is one of the fastest growing areas of research and its practical applications to derivatives pricing problem. Since the discovery of the famous Black-Scholes equation in the 1970's we have seen a surge in the number of models for a wide range of products such as plain and exotic options, interest rate derivatives, real options and many others. Gone are the days when it was possible to price these derivatives analytically. For most problems we must resort to some kind of approximate method. In this book we employ partial differential equations (PDE) to describe a range of one-factor and multi-factor derivatives products such as plain European and American options, multi-asset options, Asian options, interest rate options and real options. PDE techniques allow us to create a framework for modeling complex and interesting derivatives products. Having defined the PDE problem we then approximate it using the Finite Difference Method (FDM). This method has been used for many application areas such as fluid dynamics, heat transfer, semiconductor simulation and astrophysics, to name just a few. In this book we apply the same techniques to pricing real-life derivative products. We use both traditional (or well-known) methods as well as a number of advanced schemes that are making their way into the QF literature: Crank-Nicolson, exponentially fitted and higher-order schemes for one-factor and multi-factor options Early exercise features and approximation using front-fixing, penalty and variational methods Modelling stochastic volatility models using Splitting methods Critique of ADI and Crank-Nicolson schemes; when they work and when they don't work Modelling jumps using Partial Integro Differential Equations (PIDE) Free and moving boundary value problems in QF Included with the book is a CD containing information on how to set up FDM algorithms, how to map these algorithms to C++ as well as several working programs for one-factor and two-factor models. We also provide source code so that you can customize the applications to suit your own needs.
Practical Performance Measurement and Attribution provides a clear introduction to the subject of performance measurement. Focusing more on the practical use and calculation of performance returns rather than the academic background it will help readers gain a clear understanding of the role and implications of performance measurement in today's financial environment. «Carl’s book is a ‘must have’ resource – the complete A to Z of the increasingly complex field of performance measurement.» Glenn Solomon, Global Head of Institutional Clients, Investment Reporting & Performance, BNP Paribas Securities Services «Internationally renowned authority Carl Bacon has provided what one would expect – an exceptionally well written and practical resource that every investment performance measurement professional should own.» David Spaulding, President, The Spaulding Group «Carl Bacon is one of the most knowledgeable professionals I know on the subject of Performance Measurement. He has been a pioneer, leader, and teacher at the forefront of developments in global investment performance standards, performance attribution technique, and risk measurement. I am very pleased he has written this timely and useful book as a complete reference and explanation update on these important subjects.» James Hollis, Managing Director, Cutter Associates «Though the subject matter is complex, Carl strikes the right balance between theory and reality. This book should have a permanent spot on the desk of every performance practitioner. I will refer to it often.» Karyn Vincent, CFA, Vincent Performance Services LLC «Whether you are a provider or a user of Performance Analysis, this book is well structured, informative and truly a practical guide in every sense.» Gary Hilldrup, Global Head Performance, Risk & Client Reporting, Fortis Investments
Written by leading market risk academic, Professor Carol Alexander, Practical Financial Econometrics forms part two of the Market Risk Analysis four volume set. It introduces the econometric techniques that are commonly applied to finance with a critical and selective exposition, emphasising the areas of econometrics, such as GARCH, cointegration and copulas that are required for resolving problems in market risk analysis. The book covers material for a one-semester graduate course in applied financial econometrics in a very pedagogical fashion as each time a concept is introduced an empirical example is given, and whenever possible this is illustrated with an Excel spreadsheet. All together, the Market Risk Analysis four volume set illustrates virtually every concept or formula with a practical, numerical example or a longer, empirical case study. Across all four volumes there are approximately 300 numerical and empirical examples, 400 graphs and figures and 30 case studies many of which are contained in interactive Excel spreadsheets available from the the accompanying CD-ROM . Empirical examples and case studies specific to this volume include: Factor analysis with orthogonal regressions and using principal component factors; Estimation of symmetric and asymmetric, normal and Student t GARCH and E-GARCH parameters; Normal, Student t, Gumbel, Clayton, normal mixture copula densities, and simulations from these copulas with application to VaR and portfolio optimization; Principal component analysis of yield curves with applications to portfolio immunization and asset/liability management; Simulation of normal mixture and Markov switching GARCH returns; Cointegration based index tracking and pairs trading, with error correction and impulse response modelling; Markov switching regression models (Eviews code); GARCH term structure forecasting with volatility targeting; Non-linear quantile regressions with applications to hedging.
Written by leading market risk academic, Professor Carol Alexander, Value-at-Risk Models forms part four of the Market Risk Analysis four volume set. Building on the three previous volumes this book provides by far the most comprehensive, rigorous and detailed treatment of market VaR models. It rests on the basic knowledge of financial mathematics and statistics gained from Volume I, of factor models, principal component analysis, statistical models of volatility and correlation and copulas from Volume II and, from Volume III, knowledge of pricing and hedging financial instruments and of mapping portfolios of similar instruments to risk factors. A unifying characteristic of the series is the pedagogical approach to practical examples that are relevant to market risk analysis in practice. All together, the Market Risk Analysis four volume set illustrates virtually every concept or formula with a practical, numerical example or a longer, empirical case study. Across all four volumes there are approximately 300 numerical and empirical examples, 400 graphs and figures and 30 case studies many of which are contained in interactive Excel spreadsheets available from the the accompanying CD-ROM . Empirical examples and case studies specific to this volume include: Parametric linear value at risk (VaR)models: normal, Student t and normal mixture and their expected tail loss (ETL); New formulae for VaR based on autocorrelated returns; Historical simulation VaR models: how to scale historical VaR and volatility adjusted historical VaR; Monte Carlo simulation VaR models based on multivariate normal and Student t distributions, and based on copulas; Examples and case studies of numerous applications to interest rate sensitive, equity, commodity and international portfolios; Decomposition of systematic VaR of large portfolios into standard alone and marginal VaR components; Backtesting and the assessment of risk model risk; Hypothetical factor push and historical stress tests, and stress testing based on VaR and ETL.
In the Handbook of Asset and Liability Management: From Models to Optimal Return Strategies, Alexandre Adam presents a comprehensive guide to Asset and Liability Management. Written from a quantitative perspective with economic explanations, this book will appeal to both mathematicians and non-mathematicians alike as it gives an operational view on the business. Well structured, this book includes essential information on Balance Sheet Items and Products Modeling, Tools for Asset and Liability Managers, as well as Optimal Returns Strategies. Explaining, in detail, all the written and unwritten rules of Asset Liability Management, using up-to-date models and the latest findings, the Handbook of Asset and Liability Management is an essential tool for Asset and Liability Managers both for the present day and the future.
Paul Wilmott writes, "Quantitative finance is the most fascinating and rewarding real-world application of mathematics. It is fascinating because of the speed at which the subject develops, the new products and the new models which we have to understand. And it is rewarding because anyone can make a fundamental breakthrough. "Having worked in this field for many years, I have come to appreciate the importance of getting the right balance between mathematics and intuition. Too little maths and you won't be able to make much progress, too much maths and you'll be held back by technicalities. I imagine, but expect I will never know for certain, that getting the right level of maths is like having the right equipment to climb Mount Everest; too little and you won't make the first base camp, too much and you'll collapse in a heap before the top. "Whenever I write about or teach this subject I also aim to get the right mix of theory and practice. Finance is not a hard science like physics, so you have to accept the limitations of the models. But nor is it a very soft science, so without those models you would be at a disadvantage compared with those better equipped. I believe this adds to the fascination of the subject. «This FAQs book looks at some of the most important aspects of financial engineering, and considers them from both theoretical and practical points of view. I hope that you will see that finance is just as much fun in practice as in theory, and if you are reading this book to help you with your job interviews, good luck! Let me know how you get on!»
This book offers an in-depth and up-to-date review of different statistical tools that can be used to analyze and forecast the dynamics of two crucial for every energy company processes—electricity prices and loads. It provides coverage of seasonal decomposition, mean reversion, heavy-tailed distributions, exponential smoothing, spike preprocessing, autoregressive time series including models with exogenous variables and heteroskedastic (GARCH) components, regime-switching models, interval forecasts, jump-diffusion models, derivatives pricing and the market price of risk. Modeling and Forecasting Electricity Loads and Prices is packaged with a CD containing both the data and detailed examples of implementation of different techniques in Matlab, with additional examples in SAS. A reader can retrace all the intermediate steps of a practical implementation of a model and test his understanding of the method and correctness of the computer code using the same input data. The book will be of particular interest to the quants employed by the utilities, independent power generators and marketers, energy trading desks of the hedge funds and financial institutions, and the executives attending courses designed to help them to brush up on their technical skills. The text will be also of use to graduate students in electrical engineering, econometrics and finance wanting to get a grip on advanced statistical tools applied in this hot area. In fact, there are sixteen Case Studies in the book making it a self-contained tutorial to electricity load and price modeling and forecasting.
This book introduces the reader to the C++ programming language and how to use it to write applications in quantitative finance (QF) and related areas. No previous knowledge of C or C++ is required – experience with VBA, Matlab or other programming language is sufficient. The book adopts an incremental approach; starting from basic principles then moving on to advanced complex techniques and then to real-life applications in financial engineering. There are five major parts in the book: C++ fundamentals and object-oriented thinking in QF Advanced object-oriented features such as inheritance and polymorphism Template programming and the Standard Template Library (STL) An introduction to GOF design patterns and their applications in QF Applications The kinds of applications include binomial and trinomial methods, Monte Carlo simulation, advanced trees, partial differential equations and finite difference methods. This book includes a companion website with all source code and many useful C++ classes that you can use in your own applications. Examples, test cases and applications are directly relevant to QF. This book is the perfect companion to Daniel J. Duffy’s book Financial Instrument Pricing using C++ (Wiley 2004, 0470855096 / 9780470021620)
Wealth management is one of the areas in which banks and other personal financial services players are investing heavily. But the market is changing fast. Going forward, players therefore need to adapt their strategies to the new realities: what worked in the past will not, for the most part, be appropriate in the future. This unique book, written by a former McKinsey consultant, offers an up-to-date, detailed, practical understanding of this exciting area of financial services.
This book demystifies the foreign exchange market by focusing on the people who comprise it. Drawing on the expertise of the very professionals whose decisions help shape the market, Thomas Oberlechner describes the highly interdependent relationship between financial decision makers and news providers, showing that the assumption that the foreign exchange market is purely economic and rational has to be replaced by a more complex market psychology.