Amstat News asked three review editors to rate their top five favorite books in the September 2003 issue. Methods of Multivariate Analysis was among those chosen. When measuring several variables on a complex experimental unit, it is often necessary to analyze the variables simultaneously, rather than isolate them and consider them individually. Multivariate analysis enables researchers to explore the joint performance of such variables and to determine the effect of each variable in the presence of the others. The Second Edition of Alvin Rencher's Methods of Multivariate Analysis provides students of all statistical backgrounds with both the fundamental and more sophisticated skills necessary to master the discipline. To illustrate multivariate applications, the author provides examples and exercises based on fifty-nine real data sets from a wide variety of scientific fields. Rencher takes a «methods» approach to his subject, with an emphasis on how students and practitioners can employ multivariate analysis in real-life situations. The Second Edition contains revised and updated chapters from the critically acclaimed First Edition as well as brand-new chapters on: Cluster analysis Multidimensional scaling Correspondence analysis Biplots Each chapter contains exercises, with corresponding answers and hints in the appendix, providing students the opportunity to test and extend their understanding of the subject. Methods of Multivariate Analysis provides an authoritative reference for statistics students as well as for practicing scientists and clinicians.
An applied treatment of the key methods and state-of-the-art tools for visualizing and understanding statistical data Smoothing of Multivariate Data provides an illustrative and hands-on approach to the multivariate aspects of density estimation, emphasizing the use of visualization tools. Rather than outlining the theoretical concepts of classification and regression, this book focuses on the procedures for estimating a multivariate distribution via smoothing. The author first provides an introduction to various visualization tools that can be used to construct representations of multivariate functions, sets, data, and scales of multivariate density estimates. Next, readers are presented with an extensive review of the basic mathematical tools that are needed to asymptotically analyze the behavior of multivariate density estimators, with coverage of density classes, lower bounds, empirical processes, and manipulation of density estimates. The book concludes with an extensive toolbox of multivariate density estimators, including anisotropic kernel estimators, minimization estimators, multivariate adaptive histograms, and wavelet estimators. A completely interactive experience is encouraged, as all examples and figurescan be easily replicated using the R software package, and every chapter concludes with numerous exercises that allow readers to test their understanding of the presented techniques. The R software is freely available on the book's related Web site along with «Code» sections for each chapter that provide short instructions for working in the R environment. Combining mathematical analysis with practical implementations, Smoothing of Multivariate Data is an excellent book for courses in multivariate analysis, data analysis, and nonparametric statistics at the upper-undergraduate and graduatelevels. It also serves as a valuable reference for practitioners and researchers in the fields of statistics, computer science, economics, and engineering.
The Wiley Classics Library consists of selected books that have been made more accessible to consumers in an effort to increase global appeal and general circulation. With these new unabridged softcover volumes, Wiley hopes to extend the lives of these works by making them available to future generations of statisticians, mathematicians, and scientists. Spatial statistics – analyzing spatial data through statistical models – has proven exceptionally versatile, encompassing problems ranging from the microscopic to the astronomic. However, for the scientist and engineer faced only with scattered and uneven treatments of the subject in the scientific literature, learning how to make practical use of spatial statistics in day-to-day analytical work is very difficult. Designed exclusively for scientists eager to tap into the enormous potential of this analytical tool and upgrade their range of technical skills, Statistics for Spatial Data is a comprehensive, single-source guide to both the theory and applied aspects of spatial statistical methods. The hard-cover edition was hailed by Mathematical Reviews as an «excellent book which will become a basic reference.» This paper-back edition of the 1993 edition, is designed to meet the many technological challenges facing the scientist and engineer. Concentrating on the three areas of geostatistical data, lattice data, and point patterns, the book sheds light on the link between data and model, revealing how design, inference, and diagnostics are an outgrowth of that link. It then explores new methods to reveal just how spatial statistical models can be used to solve important problems in a host of areas in science and engineering. Discussion includes: Exploratory spatial data analysis Spectral theory for stationary processes Spatial scale Simulation methods for spatial processes Spatial bootstrapping Statistical image analysis and remote sensing Computational aspects of model fitting Application of models to disease mapping Designed to accommodate the practical needs of the professional, it features a unified and common notation for its subject as well as many detailed examples woven into the text, numerous illustrations (including graphs that illuminate the theory discussed) and over 1,000 references. Fully balancing theory with applications, Statistics for Spatial Data, Revised Edition is an exceptionally clear guide on making optimal use of one of the ascendant analytical tools of the decade, one that has begun to capture the imagination of professionals in biology, earth science, civil, electrical, and agricultural engineering, geography, epidemiology, and ecology.
First published by Wiley in 1978, this book is being re-issued with a new Preface by the author. The roots of the book lie in the writings of RA Fisher both as concerns results and the general stance to statistical science, and this stance was the determining factor in the author's selection of topics. His treatise brings together results on aspects of statistical information, notably concerning likelihood functions, plausibility functions, ancillarity, and sufficiency, and on exponential families of probability distributions.
Relevant, concrete, and thorough–the essential data-based text on statistical inference The ability to formulate abstract concepts and draw conclusions from data is fundamental to mastering statistics. Aspects of Statistical Inference equips advanced undergraduate and graduate students with a comprehensive grounding in statistical inference, including nonstandard topics such as robustness, randomization, and finite population inference. A. H. Welsh goes beyond the standard texts and expertly synthesizes broad, critical theory with concrete data and relevant topics. The text follows a historical framework, uses real-data sets and statistical graphics, and treats multiparameter problems, yet is ultimately about the concepts themselves. Written with clarity and depth, Aspects of Statistical Inference: * Provides a theoretical and historical grounding in statistical inference that considers Bayesian, fiducial, likelihood, and frequentist approaches * Illustrates methods with real-data sets on diabetic retinopathy, the pharmacological effects of caffeine, stellar velocity, and industrial experiments * Considers multiparameter problems * Develops large sample approximations and shows how to use them * Presents the philosophy and application of robustness theory * Highlights the central role of randomization in statistics * Uses simple proofs to illuminate foundational concepts * Contains an appendix of useful facts concerning expansions, matrices, integrals, and distribution theory Here is the ultimate data-based text for comparing and presenting the latest approaches to statistical inference.
A resource for probability AND random processes, with hundreds of worked examples and probability and Fourier transform tables This survival guide in probability and random processes eliminates the need to pore through several resources to find a certain formula or table. It offers a compendium of most distribution functions used by communication engineers, queuing theory specialists, signal processing engineers, biomedical engineers, physicists, and students. Key topics covered include: * Random variables and most of their frequently used discrete and continuous probability distribution functions * Moments, transformations, and convergences of random variables * Characteristic, generating, and moment-generating functions * Computer generation of random variates * Estimation theory and the associated orthogonality principle * Linear vector spaces and matrix theory with vector and matrix differentiation concepts * Vector random variables * Random processes and stationarity concepts * Extensive classification of random processes * Random processes through linear systems and the associated Wiener and Kalman filters * Application of probability in single photon emission tomography (SPECT) More than 400 figures drawn to scale assist readers in understanding and applying theory. Many of these figures accompany the more than 300 examples given to help readers visualize how to solve the problem at hand. In many instances, worked examples are solved with more than one approach to illustrate how different probability methodologies can work for the same problem. Several probability tables with accuracy up to nine decimal places are provided in the appendices for quick reference. A special feature is the graphical presentation of the commonly occurring Fourier transforms, where both time and frequency functions are drawn to scale. This book is of particular value to undergraduate and graduate students in electrical, computer, and civil engineering, as well as students in physics and applied mathematics. Engineers, computer scientists, biostatisticians, and researchers in communications will also benefit from having a single resource to address most issues in probability and random processes.
The Wiley-Interscience Paperback Series consists of selected books that have been made more accessible to consumers in an effort to increase global appeal and general circulation. With these new unabridged softcover volumes, Wiley hopes to extend the lives of these works by making them available to future generations of statisticians, mathematicians, and scientists. «Survey Errors and Survey Costs is a well-written, well-presented, and highly readable text that should be on every error-conscious statistician’s bookshelf. Any courses that cover the theory and design of surveys should certainly have Survey Errors and Survey Costs on their reading lists.» –Phil Edwards MEL, Aston University Science Park, UK Review in The Statistician, Vol. 40, No. 3, 1991 «This volume is an extremely valuable contribution to survey methodology. It has many virtues: First, it provides a framework in which survey errors can be segregated by sources. Second, Groves has skillfully synthesized existing knowledge, bringing together in an easily accessible form empirical knowledge from a variety of sources. Third, he has managed to integrate into a common framework the contributions of several disciplines. For example, the work of psychometricians and cognitive psychologists is made relevant to the research of econometricians as well as the field experience of sociologists. Finally, but not least, Groves has managed to present all this in a style that is accessible to a wide variety of readers ranging from survey specialists to policymakers.» –Peter H. Rossi University of Massachusetts at Amherst Review in Journal of Official Statistics, January 1991
The Wiley Classics Library consists of selected books that have become recognized classics in their respective fields. With these new unabridged and inexpensive editions, Wiley hopes to extend the life of these important works by making them available to future generations of mathematicians and scientists. This title addresses those basic aspects of research design which are common to many related fields in the social sciences, health sciences, education, and market research. The work presents a unified approach to a common core of problems of statistical design that exists in all these fields, along with basic similarities in practical solutions. Describing many examples and analogies that are 'portable' from application field to application field, Statistical Design for Research deals with designs that are the primary basis of research studies, but are neglected in most statistical textbooks that tend to concentrate on statistical analysis. This text takes a broader, more general and philosophical view of the statistics for the more fundamental aspects of design than do the standard treatments of experimental design. Extensively illustrated and carefully organized into seven chapters and 44 sections, this book can be readily consulted by research workers or graduate students!
An accessible introduction to the use of regression analysis in the social sciences Regression with Social Data: Modeling Continuous and Limited Response Variables represents the most complete and fully integrated coverage of regression modeling currently available for graduate-level behavioral science students and practitioners. Covering techniques that span the full spectrum of levels of measurement for both continuous and limited response variables, and using examples taken from such disciplines as sociology, psychology, political science, and public health, the author succeeds in demystifying an academically rigorous subject and making it accessible to a wider audience. Content includes coverage of: Logit, probit, scobit, truncated, and censored regressions Multiple regression with ANOVA and ANCOVA models Binary and multinomial response models Poisson, negative binomial, and other regression models for event-count data Survival analysis using multistate, multiepisode, and interval-censored survival models Concepts are reinforced throughout with numerous chapter problems, exercises, and real data sets. Step-by-step solutions plus an appendix of mathematical tutorials make even complex problems accessible to readers with only moderate math skills. The book’s logical flow, wide applicability, and uniquely comprehensive coverage make it both an ideal text for a variety of graduate course settings and a useful reference for practicing researchers in the field.
Balanced coverage of the methodology and theory of numerical methods in finance Numerical Methods in Finance bridges the gap between financial theory and computational practice while helping students and practitioners exploit MATLAB for financial applications. Paolo Brandimarte covers the basics of finance and numerical analysis and provides background material that suits the needs of students from both financial engineering and economics perspectives. Classical numerical analysis methods; optimization, including less familiar topics such as stochastic and integer programming; simulation, including low discrepancy sequences; and partial differential equations are covered in detail. Extensive illustrative examples of the application of all of these methodologies are also provided. The text is primarily focused on MATLAB-based application, but also includes descriptions of other readily available toolboxes that are relevant to finance. Helpful appendices on the basics of MATLAB and probability theory round out this balanced coverage. Accessible for students-yet still a useful reference for practitioners-Numerical Methods in Finance offers an expert introduction to powerful tools in finance.