The Wiley Classics Library consists of selected books that have become recognized classics in their respective fields. With these new unabridged and inexpensive editions, Wiley hopes to extend the life of these important works by making them available to future generations of mathematicians and scientists. Currently available in the Series: T. W. Anderson Statistical Analysis of Time Series T. S. Arthanari & Yadolah Dodge Mathematical Programming in Statistics Emil Artin Geometric Algebra Norman T. J. Bailey The Elements of Stochastic Processes with Applications to the Natural Sciences George E. P. Box & George C. Tiao Bayesian Inference in Statistical Analysis R. W. Carter Simple Groups of Lie Type William G. Cochran & Gertrude M. Cox Experimental Designs, Second Edition Richard Courant Differential and Integral Calculus, Volume I Richard Courant Differential and Integral Calculus, Volume II Richard Courant & D. Hilbert Methods of Mathematical Physics, Volume I Richard Courant & D. Hilbert Methods of Mathematical Physics, Volume II D. R. Cox Planning of Experiments Harold M. S. Coxeter Introduction to Modern Geometry, Second Edition Charles W. Curtis & Irving Reiner Representation Theory of Finite Groups and Associative Algebras Charles W. Curtis & Irving Reiner Methods of Representation Theory with Applications to Finite Groups and Orders, Volume I Charles W. Curtis & Irving Reiner Methods of Representation Theory with Applications to Finite Groups and Orders, Volume II Bruno de Finetti Theory of Probability, Volume 1 Bruno de Finetti Theory of Probability, Volume 2 W. Edwards Deming Sample Design in Business Research Amos de Shalit & Herman Feshbach Theoretical Nuclear Physics, Volume 1 –Nuclear Structure J. L. Doob Stochastic Processes Nelson Dunford & Jacob T. Schwartz Linear Operators, Part One, General Theory Nelson Dunford & Jacob T. Schwartz Linear Operators, Part Two, Spectral Theory–Self Adjoint Operators in Hilbert Space Nelson Dunford & Jacob T. Schwartz Linear Operators, Part Three, Spectral Operators Herman Fsehbach Theoretical Nuclear Physics: Nuclear Reactions Bernard Friedman Lectures on Applications-Oriented Mathematics Gerald d. Hahn & Samuel S. Shapiro Statistical Models in Engineering Morris H. Hansen, William N. Hurwitz & William G. Madow Sample Survey Methods and Theory, Volume I–Methods and Applications Morris H. Hansen, William N. Hurwitz & William G. Madow Sample Survey Methods and Theory, Volume II–Theory Peter Henrici Applied and Computational Complex Analysis, Volume 1–Power Series–lntegration–Conformal Mapping–Location of Zeros Peter Henrici Applied and Computational Complex Analysis, Volume 2–Special Functions–Integral Transforms–Asymptotics–Continued Fractions Peter Henrici Applied and Computational Complex Analysis, Volume 3–Discrete Fourier Analysis–Cauchy Integrals–Construction of Conformal Maps–Univalent Functions Peter Hilton & Yel-Chiang Wu A Course in Modern Algebra Harry Hochetadt Integral Equations Erwin O. Kreyezig Introductory Functional Analysis with Applications William H. Louisell Quantum Statistical Properties of Radiation All Hasan Nayfeh Introduction to Perturbation Techniques Emanuel Parzen Modern Probability Theory and Its Applications P.M. Prenter Splines and Variational Methods Walter Rudin Fourier Analysis on Groups C. L. Siegel Topics in Complex Function Theory, Volume I–Elliptic Functions and Uniformization Theory C. L. Siegel Topics in Complex Function Theory, Volume II–Automorphic and Abelian integrals C. L Siegel Topics in Complex Function Theory, Volume III–Abelian Functions & Modular Functions of Several Variables J. J. Stoker Differential Geometry J. J. Stoker Water Waves: The Mathematical Theory with Applications J. J. Stoker Nonlinear Vibrations in Mechanical and Electrical Systems
A new, revised edition of a yet unrivaled work on frequency domain analysis Long recognized for his unique focus on frequency domain methods for the analysis of time series data as well as for his applied, easy-to-understand approach, Peter Bloomfield brings his well-known 1976 work thoroughly up to date. With a minimum of mathematics and an engaging, highly rewarding style, Bloomfield provides in-depth discussions of harmonic regression, harmonic analysis, complex demodulation, and spectrum analysis. All methods are clearly illustrated using examples of specific data sets, while ample exercises acquaint readers with Fourier analysis and its applications. The Second Edition: Devotes an entire chapter to complex demodulation Treats harmonic regression in two separate chapters Features a more succinct discussion of the fast Fourier transform Uses S-PLUS commands (replacing FORTRAN) to accommodate programming needs and graphic flexibility Includes Web addresses for all time series data used in the examples An invaluable reference for statisticians seeking to expand their understanding of frequency domain methods, Fourier Analysis of Time Series, Second Edition also provides easy access to sophisticated statistical tools for scientists and professionals in such areas as atmospheric science, oceanography, climatology, and biology.
The subject of time series is of considerable interest, especially among researchers in econometrics, engineering, and the natural sciences. As part of the prestigious Wiley Series in Probability and Statistics, this book provides a lucid introduction to the field and, in this new Second Edition, covers the important advances of recent years, including nonstationary models, nonlinear estimation, multivariate models, state space representations, and empirical model identification. New sections have also been added on the Wold decomposition, partial autocorrelation, long memory processes, and the Kalman filter. Major topics include: * Moving average and autoregressive processes * Introduction to Fourier analysis * Spectral theory and filtering * Large sample theory * Estimation of the mean and autocorrelations * Estimation of the spectrum * Parameter estimation * Regression, trend, and seasonality * Unit root and explosive time series To accommodate a wide variety of readers, review material, especially on elementary results in Fourier analysis, large sample statistics, and difference equations, has been included.
The use of Bayesian methods for the analysis of data has grown substantially in areas as diverse as applied statistics, psychology, economics and medical science. Bayesian Methods for Categorical Data sets out to demystify modern Bayesian methods, making them accessible to students and researchers alike. Emphasizing the use of statistical computing and applied data analysis, this book provides a comprehensive introduction to Bayesian methods of categorical outcomes. * Reviews recent Bayesian methodology for categorical outcomes (binary, count and multinomial data). * Considers missing data models techniques and non-standard models (ZIP and negative binomial). * Evaluates time series and spatio-temporal models for discrete data. * Features discussion of univariate and multivariate techniques. * Provides a set of downloadable worked examples with documented WinBUGS code, available from an ftp site. The author's previous 2 bestselling titles provided a comprehensive introduction to the theory and application of Bayesian models. Bayesian Models for Categorical Data continues to build upon this foundation by developing their application to categorical, or discrete data – one of the most common types of data available. The author's clear and logical approach makes the book accessible to a wide range of students and practitioners, including those dealing with categorical data in medicine, sociology, psychology and epidemiology.
Addresses the statistical, mathematical, and computational aspects of the construction of packages and analysis of variance (ANOVA) programs. Includes a disk at the back of the book that contains all program codes in four languages, APL, BASIC, C, and FORTRAN. Presents illustrations of the dual space geometry for all designs, including confounded designs.
Analysis of Ordinal Categorical Data Alan Agresti Statistical Science Now has its first coordinated manual of methods for analyzing ordered categorical data. This book discusses specialized models that, unlike standard methods underlying nominal categorical data, efficiently use the information on ordering. It begins with an introduction to basic descriptive and inferential methods for categorical data, and then gives thorough coverage of the most current developments, such as loglinear and logit models for ordinal data. Special emphasis is placed on interpretation and application of methods and contains an integrated comparison of the available strategies for analyzing ordinal data. This is a case study work with illuminating examples taken from across the wide spectrum of ordinal categorical applications. 1984 (0 471-89055-3) 287 pp. Regression Diagnostics Identifying Influential Data and Sources of Collinearity David A. Belsley, Edwin Kuh and Roy E. Welsch This book provides the practicing statistician and econometrician with new tools for assessing the quality and reliability of regression estimates. Diagnostic techniques are developed that aid in the systematic location of data points that are either unusual or inordinately influential; measure the presence and intensity of collinear relations among the regression data and help to identify the variables involved in each; and pinpoint the estimated coefficients that are potentially most adversely affected. The primary emphasis of these contributions is on diagnostics, but suggestions for remedial action are given and illustrated. 1980 (0 471-05856-4) 292 pp. Applied Regression Analysis Second Edition Norman Draper and Harry Smith Featuring a significant expansion of material reflecting recent advances, here is a complete and up-to-date introduction to the fundamentals of regression analysis, focusing on understanding the latest concepts and applications of these methods. The authors thoroughly explore the fitting and checking of both linear and nonlinear regression models, using small or large data sets and pocket or high-speed computing equipment. Features added to this Second Edition include the practical implications of linear regression; the Durbin-Watson test for serial correlation; families of transformations; inverse, ridge, latent root and robust regression; and nonlinear growth models. Includes many new exercises and worked examples. 1981 (0 471-02995-5) 709 pp.
One of the most widely used tools in statistical forecasting, single equation regression models is examined here. A companion to the author's earlier work, Forecasting with Univariate Box-Jenkins Models: Concepts and Cases, the present text pulls together recent time series ideas and gives special attention to possible intertemporal patterns, distributed lag responses of output to input series and the auto correlation patterns of regression disturbance. It also includes six case studies.
Praise for the First Edition «An indispensable addition to any serious collection on lifetime data analysis and . . . a valuable contribution to the statistical literature. Highly recommended . . .» -Choice «This is an important book, which will appeal to statisticians working on survival analysis problems.» -Biometrics «A thorough, unified treatment of statistical models and methods used in the analysis of lifetime data . . . this is a highly competent and agreeable statistical textbook.» -Statistics in Medicine The statistical analysis of lifetime or response time data is a key tool in engineering, medicine, and many other scientific and technological areas. This book provides a unified treatment of the models and statistical methods used to analyze lifetime data. Equally useful as a reference for individuals interested in the analysis of lifetime data and as a text for advanced students, Statistical Models and Methods for Lifetime Data, Second Edition provides broad coverage of the area without concentrating on any single field of application. Extensive illustrations and examples drawn from engineering and the biomedical sciences provide readers with a clear understanding of key concepts. New and expanded coverage in this edition includes: * Observation schemes for lifetime data * Multiple failure modes * Counting process-martingale tools * Both special lifetime data and general optimization software * Mixture models * Treatment of interval-censored and truncated data * Multivariate lifetimes and event history models * Resampling and simulation methodology
First published in 1986, this unique reference to clinical experimentation remains just as relevant today. Focusing on the principles of design and analysis of studies on human subjects, this book utilizes and integrates both modern and classical designs. Coverage is limited to experimental comparisons of treatments, or in other words, clinical studies in which treatments are assigned to subjects at random.
This new work by Wilfred Kaplan, the distinguished author of influential mathematics and engineering texts, is destined to become a classic. Timely, concise, and content-driven, it provides an intermediate-level treatment of maxima, minima, and optimization. Assuming only a background in calculus and some linear algebra, Professor Kaplan presents topics in order of difficulty. In four short chapters, he describes basic concepts and geometric aspects of maxima and minima, progresses to problems with side conditions, introduces optimization and programming, and concludes with an in-depth discussion of research topics involving the duality theorems of Fenchel and Rockafellar. Throughout the text, the subject of convexity is gradually developed-from its theoretical underpinnings to problems, and finally, to its role in applications. Other features include: * A strong emphasis on practical applications of maxima and minima * An impressive array of supporting topics such as numerical analysis * An ample number of examples and problems * More than 60 illustrations highlighting the text * Algorithms to reinforce concepts * An appendix reviewing the prerequisite linear algebra Maxima and Minima with Applications is an ideal text for upper-undergraduate and graduate students taking courses in operations research, management, general engineering, and applied mathematics. It can also be used to supplement courses on linear and nonlinear optimization. This volume's broad scope makes it an excellent reference for professionals wishing to learn more about cutting-edge topics in optimization and mathematical programming.