All the information and tools needed to set up a successful method validation system Validating Chromatographic Methods brings order and Current Good Manufacturing Practices to the often chaotic process of chromatographic method validation. It provides readers with both the practical information and the tools necessary to successfully set up a new validation system or upgrade a current system to fully comply with government safety and quality regulations. The net results are validated and transferable analytical methods that will serve for extended periods of time with minimal or no complications. This guide focuses on high-performance liquid chromatographic methods validation; however, the concepts are generally applicable to the validation of other analytical techniques as well. Following an overview of analytical method validation and a discussion of its various components, the author dedicates a complete chapter to each step of validation: Method evaluation and further method development Final method development and trial method validation Formal method validation and report generation Formal data review and report issuance Templates and examples for Methods Validation Standard Operating Procedures, Standard Test Methods, Methods Validation Protocols, and Methods Validation Reports are all provided. Moreover, the guide features detailed flowcharts and checklists that lead readers through every stage of method validation to ensure success. All of the templates are also included on a CD-ROM, enabling readers to easily work with and customize them. For scientists and technicians new to method validation, this guide provides all the information and tools needed to develop a top-quality system. For those experienced with method validation, the guide helps to upgrade and improve existing systems. Note: CD-ROM/DVD and other supplementary materials are not included as part of eBook file.
This series provides the chemical physics field with a forum for critical, authoritative evaluations of advances in every area of the discipline. This stand-alone special topics volume reports recent advances in electron-transfer research with significant, up-to-date chapters by internationally recognized researchers.
Hydrothermal Properties of Materials: Experimental Data on Aqueous Phase Equilibria and Solution Properties at Elevated Temperatures and Pressures is designed for any scientists and engineer who deals with hydrothermal investigations and technologies. The book is organized into eight chapters, each dealing with a key physical property of behavior of solutions, so that a reader can obtain information on: hydrothermal experimental methods; available experimental data and the main features of properties behavior in a wide range of temperatures and pressures; and possible ways of experimental data processing for obtaining the derivative properties.
Essentials of Computational Chemistry provides a balanced introduction to this dynamic subject. Suitable for both experimentalists and theorists, a wide range of samples and applications are included drawn from all key areas. The book carefully leads the reader thorough the necessary equations providing information explanations and reasoning where necessary and firmly placing each equation in context.
Develop and manage chemical information systems This text provides a comprehensive overview of analyzing chemical problems using computer-aided methods for both newcomers and advanced computer scientists and chemists. In addition to practical how-to information and step-by-step descriptions, this resource includes case studies from Merck & Co., Inc., to further aid your understanding. This guide covers a wide range of cheminformatics topics, including: * Software development principles * Object-oriented approach * Building and buying * Agile and Iterative Development Process * UML Modeling * Deployment and Software Architecture * Presentation, Business, and Data Persistence Layer * Producing an entity dictionary * Chemistry Intelligence API * Plug and play–integrating with third-party tools Written by a former lead architect on the design of said systems at Merck & Co., Inc., this text not only lays out information, but also shares the author's experiences and advice on cheminformatics.
Introduction to Computational Chemistry Second Edition provides a comprehensive account of the fundamental principles underlying different methods, ranging from classical to the sophisticated. Although comprehensive in its coverage, this textbook focuses on calculating molecular structures and (relative) energies and less on molecular properties or dynamical aspects. No prior knowledge of concepts specific to computational chemistry are assumed, but the reader will need some understanding of introductory quantum mechanics, linear algebra, and vector, differential and integral calculus.
Presenting a concise, basic introduction to modelling and computational chemistry this text includes relevant introductory material to ensure greater accessibility to the subject. Provides a comprehensive introduction to this evolving and developing field Focuses on MM, MC, and MD with an entire chapter devoted to QSAR and Discovery Chemistry. Includes many real chemical applications combined with worked problems and solutions provided in each chapter Ensures that up-to-date treatment of a variety of chemical modeling techniques are introduced.
The range of courses requiring a good basic understanding of chemical kinetics is extensive, ranging from chemical engineers and pharmacists to biochemists and providing the fundamentals in chemistry. Due to the wide reaching nature of the subject readers often struggle to find a book which provides in-depth, comprehensive information without focusing on one specific subject too heavily. Here Dr Margaret Wright provides an essential introduction to the subject guiding the reader through the basics but then going on to provide a reference which professionals will continue to dip in to through their careers. Through extensive worked examples, Dr Wright, presents the theories as to why and how reactions occur, before examining the physical and chemical requirements for a reaction and the factors which can influence these. * Carefully structured, each chapter includes learning objectives, summary sections and problems. * Includes numerous applications to show relevance of kinetics and also provides plenty of worked examples integrated throughout the text.
This book explores the way in which quantum theory has become central to our understanding of the behaviour of atoms and molecules. It looks at the way in which this underlies so many of the experimental measurements we make, how we interpret those experiments and the language which we use to describe our results. It attempts to provide an account of the quantum theory and some of its applications to chemistry. This book is for researchers working on experimental aspects of chemistry and the allied sciences at all levels, from advanced undergraduates to experienced research project leaders, wishing to improve, by self-study or in small research-orientated groups, their understanding of the ways in which quantum mechanics can be applied to their problems. The book also aims to provide useful background material for teachers of quantum mechanics courses and their students.
Filling a gap in our systematic knowledge of gold, this monograph covers the fundamental aspects, while also considering new applications of gold compounds in catalysis, as nanoparticles, and their potential application as luminescent compounds. Written by an eminent team of authors from academia, the book analyzes the current status of gold chemistry, its special characteristics, oxidation states and main type of complexes, before going on to look at the synthesis of supramolecular aggregates due to the formation of gold-gold, gold-metal interactions or other secondary bonds. Final sections deal with LEDs, solvoluminescent and electroluminescent materials, liquid crystals and catalysis. While of interest to advanced chemistry students, this book is also useful for researchers interested in the chemistry of gold and its applications, as well as those involved in metal-metal interactions, heteronuclear chemistry or in the optical properties of coordination compounds.