Группа авторов

Список книг автора Группа авторов


    Cooperative Control of Distributed Multi-Agent Systems

    Группа авторов

    The paradigm of ‘multi-agent’ cooperative control is the challenge frontier for new control system application domains, and as a research area it has experienced a considerable increase in activity in recent years. This volume, the result of a UCLA collaborative project with Caltech, Cornell and MIT, presents cutting edge results in terms of the “dimensions” of cooperative control from leading researchers worldwide. This dimensional decomposition allows the reader to assess the multi-faceted landscape of cooperative control. Cooperative Control of Distributed Multi-Agent Systems is organized into four main themes, or dimensions, of cooperative control: distributed control and computation, adversarial interactions, uncertain evolution and complexity management. The military application of autonomous vehicles systems or multiple unmanned vehicles is primarily targeted; however much of the material is relevant to a broader range of multi-agent systems including cooperative robotics, distributed computing, sensor networks and data network congestion control. Cooperative Control of Distributed Multi-Agent Systems offers the reader an organized presentation of a variety of recent research advances, supporting software and experimental data on the resolution of the cooperative control problem. It will appeal to senior academics, researchers and graduate students as well as engineers working in the areas of cooperative systems, control and optimization.

    Health Monitoring of Structural Materials and Components

    Группа авторов

    The first complete introduction to health monitoring, encapsulating both technical information and practical case studies spanning the breadth of the subject. Written by a highly-respected figure in structural health monitoring, this book provides readers with the technical skills and practical understanding required to solve new problems encountered in the emerging field of health monitoring. The book presents a suite of methods and applications in loads identification (usage monitoring), in-situ damage identification (diagnostics), and damage and performance prediction (prognostics). Concepts in modelling, measurements, and data analysis are applied through real-world case studies to identify loading, assess damage, and predict the performance of structural components, as well as examine engine components, automotive accessories, aircraft parts, spacecraft components, civil structures and defence system components. In particular the book: provides the reader with a fundamental and practical understanding of the material; discusses models demonstrating the physical basis for health monitoring techniques; gives a detailed review of the best practices in dynamic measurements including sensing; presents numerous data analysis techniques using model- and signal-based methods; discusses case studies involving real-world applications of health monitoring; offers end-of-chapter problems to enhance the study of the topic for students and instructors; and includes an accompanying website with MATLAB programs providing hands-on training to readers for writing health monitoring model simulation and data analysis algorithms. Health Monitoring of Structural Materials and Components is an excellent introductory text for newcomers to the subject as well as an excellent study tool for students and lecturers. Practitioners and researchers, those with a greater understanding and application of the technical skills involved, will also find this essential reading as a reference text to address current and future challenges in this field. The wide variety of case studies will appeal to a broad spectrum of engineers in the aerospace, civil, mechanical, machinery and defence communities.

    Output Coupling in Optical Cavities and Lasers

    Группа авторов

    Authored by one of the founders and major players in this field of research, this is a thorough and comprehensive approach to the quantum mechanical output coupling theory of lasers – an important area of optical physics that has so far been neglected in the scientific literature. Clearly structured, the various sections cover one-dimensional optical cavity, laser, and microcavity laser with output coupling, atom-field interaction in a free-dimensional space, 3D analysis of spontaneous emission in a planar microcavity with output coupling, plus two-atom spontaneous emission. With numerous end-of-chapter problems, this is vital reading for theoretical physicists, laser specialists, and physicists in industry, as well as students and lecturers in physics.

    Polarized Light in Liquid Crystals and Polymers

    Группа авторов

    Polarized Light in Liquid Crystals and Polymers deals with the linear optics of birefringent materials, such as liquid crystals and polymers, and surveys light propagation in such media with special attention to applications. It is unique in treating light propagation in micro- and nanostructured birefringent optical elements, such as lenses and gratings composed of birefringent materials, as well as the spatial varying anisotropic structures often found in miniaturized liquid crystal devices.

    Theory and Design of Charged Particle Beams

    Группа авторов

    This indispensable work offers a broad synoptic description of beams, applicable to a wide range of other devices, such as low-energy focusing and transport systems and high-power microwave sources. The monograph develops the material from the basic principles in a systematic way and discusses the underlying physics and validity of theoretical relationships, design formulas and scaling laws. Assumptions and approximations are clearly indicated throughout. This new, revised and updated edition has 10% additional content, and features, among others, a new chapter on beam physics research from 1993 to 2007, significant enhancement of chapter 6 on emittance variation, updated references and color image plates.

    Theory and Design of Charged Particle Beams

    Группа авторов

    Although particle accelerators are the book's main thrust, it offers a broad synoptic description of beams which applies to a wide range of other devices such as low-energy focusing and transport systems and high-power microwave sources. Develops material from first principles, basic equations and theorems in a systematic way. Assumptions and approximations are clearly indicated. Discusses underlying physics and validity of theoretical relationships, design formulas and scaling laws. Features a significant amount of recent work including image effects and the Boltzmann line charge density profiles in bunched beams.

    Guide to Analysis of DNA Microarray Data

    Группа авторов

    Written for biologists and medical researchers who don't have any special training in data analysis and statistics, Guide to Analysis of DNA Microarray Data, Second Edition begins where DNA array equipment leaves off: the image produced by the microarray. The text deals with the questions that arise starting at this point, providing an introduction to microarray technology, then moving on to image analysis, data analysis, cluster analysis, and beyond. With all chapters rewritten, updated, and expanded to include the latest generation of technology and methods, Guide to Analysis of DNA Microarray Data, Second Edition offers practitioners reliable information using concrete examples and a clear, comprehensible style. This Second Edition features entirely new chapters on: * Image analysis * Experiment design * Automated analysis, integrated analysis, and systems biology * Interpretation of results Intended for readers seeking practical applications, this text covers a broad spectrum of proven approaches in this rapidly growing technology. Additional features include further reading suggestions for each chapter, as well as a thorough review of available analysis software.

    Fundamentals of Light Microscopy and Electronic Imaging

    Группа авторов

    Over the last decade, advances in science and technology have profoundly changed the face of light microscopy. Research scientists need to learn new skills in order to use a modern research microscope–skills such as how to align microscope optics and perform image processing. Fundamentals of Light Microscopy and Electronic Imaging explores the basics of microscope design and use. The comprehensive material discusses the optical principles involved in diffraction and image formation in the light microscope, the basic modes of light microscopy, the components of modern electronic imaging systems, and the image processing operations necessary to acquire and prepare an image. Written in a practical, accessible style, Fundamentals of Light Microscopy and Electronic Imaging reviews such topics as: Illuminators, filters, and isolation of specific wavelengths Phase contrast and differential interference contrast Properties of polarized light and polarization microscopy Fluorescence and confocal laser scanning microscopy Digital CCD microscopy and image processing Each chapter includes practical demonstrations and exercises along with a discussion of the relevant material. In addition, a thorough glossary assists with complex terminology and an appendix contains lists of materials, procedures for specimen preparation, and answers to questions. An essential resource for both, experienced and novice microscopists.

    A Practical Guide to Reliable Finite Element Modelling

    Группа авторов

    Many books have been written about the finite element method; little however has been written about procedures that assist a practicing engineer in undertaking an analysis in such a way that errors and uncertainties can be controlled. In A Practical Guide to Reliable Finite Element Modelling, Morris addresses this important area. His book begins by introducing the reader to finite element analysis (FEA), covering the fundamental principles of the method, whilst also outlining the potential problems involved. He then establishes consistent methods for carrying out analyses and obtaining accurate and reliable results, concluding with a new method for undertaking error control led analyses which is illustrated by means of two case studies. The book addresses a number of topics that: • Systematically cover an introduction to FEA, how computers build linear-static and linear-dynamic finite element models, the identification of error sources, error control methods and error-controlled analyses. • Enable the reader to support the design of complex structures with reliable, repeatable analyses using the finite element method. • Provide a basis for establishing good practice that could underpin a legal defence in the event of a claim for negligence. A Practical Guide to Reliable Finite Element Modelling will appeal to practising engineers engaged in conducting regular finite element analyses, particularly those new to the field. It will also be a resource for postgraduate students and researchers addressing problems associated with errors in the finite element method. This book is supported by an author maintained website at http://www.femec.co.uk

    Airway Smooth Muscle in Asthma and COPD

    Группа авторов

    In this book, leading researchers in medicine and molecular pharmacology explain the cellular mechanisms that control airway smooth muscle. The means by which these are disrupted in disease, and the pharmacologic strategies by which they may be modified are discussed and future therapeutic interventions are identified. Aimed at specialists in pulmonology, this volume provides the clinician with the most up to date information on one of the core physiological processes in airway disease, and offers insights into current and future approaches to management. Authoritative update on key mechanisms of airway constriction in Asthma and COPD Relates latest research to bronchodilator therapy Multi-contributed text, co-coordinated by two of the leading authorities in the field.