Laboratory Methods for Soil Health Analysis, Volume 2. Группа авторов

Читать онлайн.
Название Laboratory Methods for Soil Health Analysis, Volume 2
Автор произведения Группа авторов
Жанр Биология
Серия
Издательство Биология
Год выпуска 0
isbn 9780891189862



Скачать книгу

doi:10.2136/sssaj2004.8090

      24 Moebius‐Clune, B.N., Moebius‐Clune, D.J., Gugino, B.K., Idowu, O.J., Schindelbeck, R.R., Ristow, A.J., van Es, H.M., Thies, J.E., Shayler, H.A., McBride, M.B., Kurtz, K.S.M., Wolfe, D.W., and Abawi, G.S. (2016). Comprehensive Assessment of Soil Health– The Cornell Framework, edition 3.2, Cornell University, Geneva, NY. http://soilhealth.cals.cornell.edu/training‐manual/ (Accessed 7 Oct. 2018).

      25 Natural Resources Conservation Service (2020). Soil Health. Washington, D.C.: Natural Resources Conservation Service. https://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/health/ (Accessed 20 Feb. 2020).

      26 Nelson, D.W., and Sommers, L.E. (1996). Total carbon, organic carbon, and organic matter. In D.L. Sparks, (ed.), Methods of soil analysis: Part 3. Chemical methods (p. 961–1010). Madison, WI: SSSA. doi:10.2136/sssabookser5.3.c34

      27 Olness, A., and Archer, D.W. (2005). Effect of organic carbon on available water in soil. Soil Sci. 170, 90–101. doi:10.1097/00010694‐200502000‐00002

      28 Olsen, S.R., and Sommers, L.E. (1982). Phosphorus. In A.L. Page, et al., editors, Methods of soil analysis: Part 2. Chemical and microbiological properties (p. 403–430). 2nd ed. Madison, WI: ASA and SSSA.

      29 Reynolds, W.D., and Elrick, D.E. (1990). Ponded infiltration from a single ring: I. Analysis of steady flow. Soil Sci. Soc. Am. J. 54, 1233–1241. doi:10.2136/sssaj1990.03615995005400050006x

      30 Rhoades, J.D. (1996). Salinity: Electrical conductivity and total dissolved solids. In: D.L. Sparks, editor, Methods of soil analysis: Part 3. Chemical methods (p. 417–435). Madison, WI: SSSA. doi:10.2136/sssabookser5.3.c14

      31 Schindelbeck, R.R., Moebius‐Clune, B.N., Moebius‐Clune, D.J., Kurtz, K.S., and van Es, H.M. (2016). Cornell university comprehensive assessment of soil health laboratory standard operating procedures. Ithaca, NY: Cornell University. https://cpb‐us‐e1.wpmucdn.com/blogs.cornell.edu/dist/f/5772/files/2015/03/CASH‐Standard‐Operating‐Procedures‐030217final‐u8hmwf.pdf

      32 Sherrod, L.A., Dunn, G., Peterson, G.A., and Kolberg, R.L. (2002). Inorganic carbon analysis by modified pressure‐calcimeter method. Soil Sci. Soc. Am. J. 66, 299–305. doi:10.2136/sssaj2002.2990

      33 Sikora, F.S., and Moore, K.P. (2014). Soil test methods from the southeastern United States. Southern Cooperative Series Bulletin 419. Washington, D.C.: Wetlands Reserve Enhancement Partnership.

      34 Soil Science Society of America. (2020). The North American Proficiency Test Program. Madison, WI: SSSA. https://www.naptprogram.org/ (Accessed 20 Feb. 2020).

      35 Stott, D.E. (2019). Recommended soil health indicators and associated laboratory procedures. Soil Health Technical Note No. 450‐03. Washington, D.C.: U.S. Department of Agriculture, Natural Resources Conservation Service.

      36 Tabatabai, M.A. (1994). Soil enzymes. In: R.W. Weaver, S. Angle, P. Bottomley, D. Bezdicek, S. Smith, A. Tabatabai, A. Wollum, (eds.), Methods of soil analysis: Part 2. Microbiological and biochemical properties (p. 775–833). SSSA, Madison, WI.

      37 Thomas, G.W. (1996). Soil pH and soil acidity. In D.L. Sparks, editor, Methods of soil analysis: Part 3. Chemical methods (p. 475–490). Madison, WI: SSSA.

      38 Thompson, L.R., Sanders, J.G., McDonald, D., Amir, A., Jansson, J.K., Gilbert, J.A., and Knight, R., and The Earth Microbiome Project Consortium. (2017). A communal catalogue reveals earth’s multiscale microbial diversity. Nature 551, 457–463. doi:10.1038/nature24621

      39 Tonitto, C., David, M.B., and Drinkwater, L.E. (2006). Replacing bare fallows with cover crops in fertilizer‐intensive cropping systems: A meta‐analysis of crop yield and N dynamics. Agric. Ecosyst. Environ. 112, 58–72. doi:10.1016/j.agee.2005.07.003

      40 Ussiri, D.A.N., and Lal, R. (2009). Long‐term tillage effects on soil carbon storage and carbon dioxide emissions in continuous corn cropping system from an alfisol in Ohio. Soil Tillage Res. 104, 39–47. doi:10.1016/j.still.2008.11.008

      41 Varvel, G.E., and Wilhelm, W.W. (2010). Long‐term soil organic carbon as affected by tillage and cropping systems. Soil Sci. Soc. Am. J. 74, 915–921. doi:10.2136/sssaj2009.0362

      42 Veum, K.S., Sudduth, K.E., Kremer, R.J., and Kitchen, N.R. (2015). Estimating a soil quality index with VNIR reflectance spectroscopy. Soil Sci. Soc. Am. J. 79, 637–649. doi:10.2136/sssaj2014.09.0390

      43 Wallace, H.A. (1910). Relation between livestock farming and the fertility of the land. Thesis. Ames, IA: Iowa State University. doi:10.31274/rtd‐180813‐7404

      44 Wander, M.M., Bidart‐Bouzat, G., and Aref, S. (1998). Tillage impacts on depth distribution of total and particulate organic matter in three Illinois soils. Soil Sci. Soc. Am. J. 62, 1704–1711. doi:10.2136/sssaj1998.03615995006200060031x

      45 Weil, R., Islam, K.R., Stine, M.A., Gruver, J.B., and Samson‐Liebig, S.E. (2003). Estimating active carbon for soil quality assessment: A simple method for laboratory and field use. Am. J. Altern. Agric. 18, 3–17. doi:10.1079/AJAA2003003

      46 Yoo, K.H., Touchton, J.T., and Walker, R.H. (1988). Runoff, sediment and nutrient losses from various tillage systems of cotton. Soil Tillage Res. 12, 13–24. doi:10.1016/0167‐1987(88)90052‐9

      47 Zhu, J.C., Gantzer, C.J., Anderson, S.H., Alberts, E.E., and Buselinck, R.R. (1989). Runoff, soil and dissolved nutrient losses from no‐tillage soybean and winter cover crops. Soil Sci. Soc. Am. J. 53, 1210–1214. doi:10.2136/sssaj1989.03615995005300040037x

      48 Zibilske, L. (1994). Carbon mineralization. In: P.J. Bottomley, J.S. Angle, R.W. Weaver, (Eds.), Methods of soil analysis: Part 2. Microbiological and biochemical properties (p. 835–863). Madison, WI: SSSA.

       Mark A. Liebig, Dennis Chessman, Jonathan J. Halvorson, and Roberto Luciano

      Sampling approaches for soil health assessments will vary considerably depending upon the purpose for which an evaluation is undertaken. Decisions regarding sampling location, timing, and frequency will ultimately determine the quality and usefulness of collected data. Tradeoffs associated with balancing the quantity and quality of information obtained with the investment of time and resources must be addressed when selecting a sampling method. This chapter is intended to provide general guidelines for collecting samples and conducting select field evaluations for soil health assessments.

      Soil health sampling approaches will vary considerably depending upon the evaluator’s goals which may range from a qualitative understanding of near‐surface soil conditions at a single point in time to detailed analytical characterizations of a suite of soil properties across broad landscapes to evaluate long‐term change. Whether a land manager, consultant, conservationist, or scientist, each evaluator will need to balance the desire for useful information about a soil’s status with the investment of time and resources to obtain that information (Dick et al., 1996).

      Regardless of the chosen approach, a common requirement of all is to accurately assess the condition of a soil, which is an inherently complex medium varying across space and time. To address this complexity, evaluators must consider a series of questions dealing with location, timing, frequency, and sampling protocol that will affect the quality and usefulness of collected data.