Global Drought and Flood. Группа авторов

Читать онлайн.
Название Global Drought and Flood
Автор произведения Группа авторов
Жанр География
Серия
Издательство География
Год выпуска 0
isbn 9781119427216



Скачать книгу

output (POP) module produces the GET‐D final product in NetCDF, GRIB2 and PNG formats.

      Major data inputs and outputs of the GET‐D system are provided in Table 2.1 and Figure 2.2, respectively.

      2.4.3. GET‐D System Outputs

Schematic illustration of the 2/4/8/12-week composite of ESI generated from the GET-D system at 8 km resolution over the North American domain on 22 September 2016. OSPO, Office of Satellite and Product Operations.

      (Source: National Oceanic and Atmospheric Administration, ESI generated from the GET‐D system, September 22, 2017.)

Schematic illustration of the unique characteristics of Rapid Change Index (RCI) values for the 2012 central United States flash drought. Unusual negative values in June in the circled central Midwest provided an early warning for the flash drought in August.

      (Source: From Otkin, J. A., M. C. Anderson, C. Hain, and M. Svoboda, 2014. Examining the relationship between drought development and rapid changes in the Evaporative Stress Index. J. Hydrometeor., 15, 938–956. © American Meteorological Society.)

      The TCEM assumes that the uncertainties or errors of the three retrieval sources are from mutually distinct sources and are independent of each other (Scipal et al., 2008). Here, the TCEM is based on three categories of soil‐moisture data sets that provide 25 km grid‐scale soil moisture (SM) estimations: (a) the Noah land surface model (NLSM), which is subject to errors in the model representation and in the meteorological forcing data; (b) the ESI developed by the ALEXI model, which does not use any precipitation input, but is sensitive to the accuracy of the thermal infrared (TIR) satellite LST and other model inputs (e.g., vegetation cover, available energy); and (c) the microwave satellite retrievals which are based on land surface microwave radiation physics, with error sources being microwave satellite sensor signal/noise ratio and soil moisture retrieval algorithm accuracy.

      All of the data used here were temporally composited over 4‐week intervals. Then the uncertainty or root‐mean‐square error (RMSE) for each of the four microwave SM products was individually computed in combination with NLSM and ESI in TCEM in order to meet the error independence requirement of the three data sets used in TCEM. Meanwhile, the NLSM and ESI data sets were evaluated four times with each corresponding to a different microwave SM data set. Their errors were calculated as the average of the four RMSE values respectively. The climatology of each of the above‐mentioned soil moisture data sets were generated by assembling the variable values for a particular calendar week for all years of the study periods. Once the climatology was assembled, the standardized anomalies (ψ) were computed for week w, year y, and grid location (i, j), as

      (2.27)equation

      where images and σ x are climatology and climatological standard deviations for each of the six retrievals. Thus, drought estimations for microwave satellite retrieved soil moisture (MWSM; ψ MWSM), ESI ( ψ ESI), and NLSM ( ψ NLSM) are then expressed as (Janssen et al., 2007; Scipal et al., 2008)

      (2.28)equation

      (2.29)equation

      (2.30)equation

      where Π indicates the true drought status, and μ , ω . and ρ denote the unknown errors in the MWSM, the ESI based on thermal remotely sensed evapotranspiration, and NLSM. The ESI data from GET‐D were generated only for the North America domain as described in the previous section. For this study we have developed a new and novel method of using twice‐daily observations from polar sensors such as the MODIS and Visible Infrared Imaging Radiometer Suite (VIIRS) to estimate the mid‐morning rise in LST that is used to drive the energy balance estimations within the ALEXI model (Hain et al., 2017). This allows