Название | Evolution: Its nature, its evidence, and its relation to religious thought |
---|---|
Автор произведения | Joseph LeConte |
Жанр | Документальная литература |
Серия | |
Издательство | Документальная литература |
Год выпуска | 0 |
isbn | 4064066184735 |
The Basis laid.—But Science is not content with removal of a priori objections. She must also have positive proofs. The ground must not only be cleared, but a true inductive basis of facts, and especially of laws and methods, must be laid. This was the life-work of Agassiz. Yes, as strange as it may seem to some, it is nevertheless true that the whole inductive basis, upon which was afterward built the modern theory of evolution, was laid by Agassiz, although he himself persistently refused to build upon it any really scientific superstructure. It is plain, then, that all attempts at building previous to Agassiz’s work must, of necessity, have resulted in an unsubstantial structure—an edifice built on sand, which could not and ought not to stand. I must stop here in order to explain somewhat fully this important point, and thus to give due credit to the work of Agassiz.
The title of any scientist to greatness must be determined, not so much by the multitude of new facts he has discovered as by the new laws he has established, and especially by the new methods he has inaugurated or perfected. Now, I think it can be shown that to Agassiz, more than to any other man, is due the credit of having established the laws of succession of living forms in the geological history of the earth—laws upon which must rest any true theory of evolution. Also, that to him, more than to any other man, is due the credit of having perfected the method (method of comparison) by the use of which alone biological science has advanced so rapidly in modern times. This is high praise. I wish to justify it. I begin with the method.
Scientific methods bear the same relation to intellectual progress that tools, instruments, machines, mechanical contrivances of all sorts, bear to material progress. They are intellectual contrivances—indirect ways of accomplishing results far too hard for bare-handed, unaided intellectual strength. As the civilized man has little or no advantage over the savage in bare-handed strength of muscle, and the enormous superiority of the latter in accomplishing material results is due wholly to the use of mechanical contrivances or machines; even so, in the higher sphere of intellect, the scientist makes no pretension to the possession of greater unaided intellectual strength than belongs to the uncultured man, or even perhaps to the savage. The amazing intellectual results achieved by science are due wholly to the use of intellectual contrivances or scientific methods. As in the lower sphere of material progress the greatest benefactors of the race are the inventors or perfecters of new mechanical contrivances or machines, so also in the higher sphere of intellectual progress the greatest benefactors of the race are the inventors or perfecters of new intellectual contrivances or methods of research.
To illustrate the power of methods, and the necessity of their use, take the case of the method of notation, so characteristic of mathematics, and take it even in its simplest and most familiar form: Nine numeral figures, having each a value of its own, and another dependent upon its position; a few letters, a and b, and x and y, connected by symbols, + and-and =: that is all. And yet, by the use of this simple contrivance, the dullest school-boy accomplishes intellectual results which would defy the utmost efforts of the unaided strength of the greatest genius. And this is only the simplest tool-form of this method. Think of the results accomplished by the use of the more complex machinery of the higher mathematics!
Take next the method of experiment so characteristic of physics and chemistry. The phenomena of the external world are far too complex and far too much affected by disturbing forces and modifying conditions to be understood at once by bare, unaided intellectual insight. They must first be simplified. The physicist, therefore, contrives artificial phenomena under ideal conditions. He removes one complicating condition after another, one disturbing cause and then another, watching meanwhile the result, until finally the necessary condition and the true cause are discovered. On this method rests the whole fabric of the physical and chemical sciences.
But when we rise still higher, viz., into the plane of life, the phenomena of Nature become still more complex and difficult to understand directly; and yet just here, where we are the most powerless without some method, our method of experiment almost wholly fails us. The phenomena of life are not only far more complex than those of dead matter, but the conditions of life are so nicely adjusted, the equilibrium of forces so delicately balanced, that, when we attempt to introduce our clumsy hands in the way of experiment, we are in danger of overthrowing the equilibrium, of destroying the conditions of the experiment, viz., life; and then the whole problem falls immediately into the domain of chemistry. What shall we do? In this dilemma we find that Nature herself has already prepared for us, ready to hand, an elaborate series of simplified conditions equivalent to experiments. The phenomena of life are, indeed, far too complex to be at once understood—the problem of life too hard to be solved—in the higher animals; but, as we go down the animal scale, complicating conditions are removed one by one, the phenomena of life become simpler and simpler, until in the lowest microscopic cell or spherule of living protoplasm we finally reach the simplest possible expression of life. The equation of life is reduced to its simplest terms, and now, if ever, we begin to understand the true value of the unknown quantity. This is the natural history series, or Taxonomic series, already spoken of on page 10. Again, Nature has prepared, and is now preparing daily before our eyes, another series of gradually simplified conditions. Commencing with the mature condition of one of the higher animals—for example, man—and going backward along the line of individual history through the stages of infant embryo, egg and germ, we find again the phenomena of life becoming simpler and simpler, until we again reach the simplest conceivable condition in the single microscopic cell or spherule of living protoplasm. This, as already explained, is the embryonic or Ontogenic series. Again, that there be no excuse for man’s ignorance of the laws of life, Nature has prepared still another series; and this the grandest of all, for it is the cause of both the others. Commencing with the plants and animals of the present epoch, and going back along the track of geological times, through Cenozoic, Mesozoic, Palæozoic, Eozoic, to the very dawn of life—the first syllable of recorded time—and we find again a series of organic forms growing simpler and simpler, until, if we could find the very first, we would undoubtedly again reach the simplest condition in the lowest conceivable forms of life. This, as we have already seen, is the geologic or evolution, or Phylogenic series. We have already explained these three series, only in this connection it suits our purpose to take the terms backward.
Now, it is by comparison of the terms of each of these series going up and down, and watching the first appearance, the growth, and the perfecting of tissues, organs, functions, and by the comparison of the three series with one another term by term—I say it is wholly by comparison of this kind that biology has in recent times become a true inductive science. This is the “method of comparison.” It is the great method of research in all those departments which can not be readily managed by the method of experiment. It has already regenerated biology, and is now applied with like success in sociology under the name of historic method. Yes; anatomy became scientific only through comparative anatomy, physiology through comparative physiology, and embryology through comparative embryology. May we not add, sociology will become truly scientific only through comparative sociology, and psychology through comparative psychology?
Now, while it is true that this method, like all other methods, has been used, from the earliest dawn of thought, in a loose and imperfect way, yet it is only in very recent times that it has been organized, systematized, perfected, as a true scientific method, as a great instrument of research; and the prodigious recent advance of biology is due wholly to this cause. Now, among the great leaders of this modern movement, Agassiz undoubtedly stands in the very first rank. I must try to make this point plain, for it is by no means generally understood.
Cuvier is acknowledged to be the great founder of comparative anatomy. He it was that first perfected the method of comparison, but comparison only in one series—the Taxonomic. Von Baer and Agassiz added to this comparison in the ontogenic series also, and comparison of these two series with each other, and therefore