The Complete Essays by Herbert Spencer (Vol. 1-3). Spencer Herbert

Читать онлайн.
Название The Complete Essays by Herbert Spencer (Vol. 1-3)
Автор произведения Spencer Herbert
Жанр Математика
Серия
Издательство Математика
Год выпуска 0
isbn 4064066381769



Скачать книгу

And it seems also beyond question that there must have been a consequent rhythmical change in the distribution of organisms—a rhythmical change to which we here wish to draw attention, as one cause of minor breaks in the succession of fossil remains. Each species of plant and animal has certain limits of heat and cold within which only it can exist; and these limits in a great degree determine its geographical position. It will not spread north of a certain latitude, because it cannot bear a more northern winter, nor south of a certain latitude, because the summer heat is too great; or else it is indirectly restrained from spreading further by the effect of temperature on the humidity of the air, or on the distribution of the organisms it lives upon. But now, what will result from a slow alteration of climate, produced as above described? Supposing the period we set out from is that in which the contrast of seasons is least marked, it is manifest that during the progress towards the period of most violent contrast, each species of plant and animal will gradually change its limits of distribution—will be driven back, here by the winter's increasing cold, and there by the summer's increasing heat—will retire into those localities that are still fit for it. Thus during 10,000 years, each species will ebb away from certain regions it was inhabiting; and during the succeeding 10,000 years will flow back into those regions. From the strata there forming, its remains will disappear; they will be absent from some of the superposed strata; and will be found in strata higher up. But in what shapes will they re-appear? Exposed during the 21,000 years of their slow recession and their slow return, to changing conditions of life, they are likely to have undergone modifications; and will probably re-appear with slight differences of constitution and perhaps of form—will be new varieties or perhaps new sub-species.

      To this cause of minor breaks in the succession of organic forms—a cause on which we have dwelt because it has not been taken into account—we must add sundry others. Besides these periodically-recurring changes of climate, there are the irregular ones produced by redistributions of land and sea; and these, sometimes less, sometimes greater, in degree, than the rhythmical changes, must, like them, cause in each region emigrations and immigrations of species; and consequent breaks, small or large as the case may be, in the paleontological series. Other and more special geological changes must produce other and more local blanks in the succession. By some inland elevation the natural drainage of a continent is modified; and instead of the sediment previously brought down to the sea by it, a great river brings down sediment unfavourable to various plants and animals living in its delta: whereupon these disappear from the locality, perhaps to re-appear in a changed form after a long epoch. Upheavals or subsidences of shores or sea-bottoms, involving deviations of marine currents, remove the habitats of many species to which such currents are salutary or injurious; and further, this redistribution of currents alters the places of sedimentary deposits, and thus stops the burying of organic remains in some localities, while commencing it in others. Had we space, many more such causes of blanks in our paleontological records might be added. But it is needless here to enumerate them. They are admirably explained and illustrated in Sir Charles Lyell's Principles of Geology.

      Now, if these minor changes of the Earth's surface produce minor breaks in the series of fossilized remains; must not great changes produce great breaks? If a local upheaval or subsidence causes throughout its small area the absence of some links in the chain of fossil forms; does it not follow that an upheaval or subsidence extending over a large part of the Earth's surface, must cause the absence of a great number of such links throughout a very wide area?

      When during a long epoch a continent, slowly sinking, gives place to a far-spreading ocean some miles in depth, at the bottom of which no deposits from rivers or abraded shores can be thrown down; and when, after some enormous period, this ocean-bottom is gradually elevated and becomes the site for new strata; it is clear that the fossils contained in these new strata are likely to have but little in common with the fossils of the strata below them. Take, in illustration, the case of the North Atlantic. We have already named the fact that between this country and the United States, the ocean-bottom is being covered with a deposit of chalk—a deposit which has been forming, probably, ever since there occurred that great depression of the Earth's crust from which the Atlantic resulted in remote geologic times. This chalk consists of the minute shells of Foraminifera, sprinkled with remains of small Entomostraca, and probably a few Pteropod-shells; though the sounding lines have not yet brought up any of these last. Thus, in so far as all high forms of life are concerned, this new chalk-formation must be a blank. At rare intervals, perhaps, a polar bear, drifted on an iceberg, may have its bones scattered over the bed; or a dead, decaying whale may similarly leave traces. But such remains must be so rare, that this new chalk-formation, if accessible, might be examined for a century before any of them were disclosed. If now, some millions of years hence, the Atlantic-bed should be raised, and estuary deposits or shore deposits laid upon it, these would contain remains of a Flora and a Fauna so distinct from everything below them, as to appear like a new creation.

      Thus, along with continuity of life on the Earth's surface, there not only may be, but there must be, great gaps in the series of fossils; and hence these gaps are no evidence against the doctrine of Evolution.

      One other current assumption remains to be criticized; and it is the one on which, more than on any other, depends the view taken respecting the question of development.

      From the beginning of the controversy, the arguments for and against have turned upon the evidence of progression in organic forms, found in the ascending series of our sedimentary formations. On the one hand, those who contend that higher organisms have been evolved out of lower, joined with those who contend that successively higher organisms have been created at successively later periods, appeal for proof to the facts of Paleontology; which, they say, countenance their views. On the other hand, the Uniformitarians, who not only reject the hypothesis of development, but deny that the modern forms of life are higher than the ancient ones, reply that the paleontological evidence is at present very incomplete; that though we have not yet found remains of highly-organized creatures in strata of the greatest antiquity, we must not assume that no such creatures existed when those strata were deposited; and that, probably, search will eventually disclose them.

      It must be admitted that thus far, the evidence has gone in favour of the latter party. Geological discovery has year after year shown the small value of negative facts. The conviction that there are no traces of higher organisms in earlier strata, has resulted not from the absence of such traces, but from incomplete examination. At p. 460 of his Manual of Elementary Geology, Sir Charles Lyell gives a list in illustration of this. It appears that in 1709, fishes were not known lower than the Permian system. In 1793 they were found in the subjacent Carboniferous system; in 1828 in the Devonian; in 1840 in the Upper Silurian. Of reptiles, we read that in 1710 the lowest known were in the Permian; in 1844 they were detected in the Carboniferous; and in 1852 in the Upper Devonian. While of the Mammalia the list shows that in 1798 none had been discovered below the Middle Eocene: but that in 1818 they were discovered in the Lower Oolite; and in 1847 in the Upper Trias.

      Yet is this assumption indefensible, as some who make it very well know. Facts may be cited against it which show that it is a more than questionable one—that it is a highly improbable one; while the evidence assigned in its favour will not bear criticism.

      Because in Bohemia, Great Britain, and portions of North America, the lowest unmetamorphosed strata yet discovered, contain but slight traces of life, Sir R. Murchison conceives that they were formed while yet few, if any, plants or animals had been created; and, therefore, classes them as "Azoic." His own pages, however, show the illegitimacy of the conclusion that there existed at that period no considerable amount of life. Such traces of life as have been