Solar-to-Chemical Conversion. Группа авторов

Читать онлайн.
Название Solar-to-Chemical Conversion
Автор произведения Группа авторов
Жанр Химия
Серия
Издательство Химия
Год выпуска 0
isbn 9783527825080



Скачать книгу

et al. (2016). Phys. Chem. Chem. Phys. 18: 31551–31565.

      271 271 Capone, M., Bovi, D., Narzi, D., and Guidoni, L. (2015). Biochemistry 54: 6439–6442.

      272 272 Shoji, M., Isobe, H., and Yamaguchi, K. (2015). Chem. Phys. Lett. 636: 172–179.

      273 273 Suga, M., Akita, F., Yamashita, K. et al. (2019). Science 366: 334.

      274 274 Pushkar, Y., Davis, K.M., and Palenik, M.C. (2018). J. Phys. Chem. Lett. 9: 3525–3531.

      275 275 Corry, T.A. and O'Malley, P.J. (2018). J. Phys. Chem. Lett. 9: 6269–6274.

      276 276 Isobe, H., Shoji, M., Shen, J.‐R., and Yamaguchi, K. (2016). Inorg. Chem. 55: 502–511.

      277 277 Isobe, H., Shoji, M., Suzuki, T. et al. (2019). Theory Comput. 15: 2375–2391.

      278 278 Hillier, W. and Wydrzynski, T. (2004). Phys. Chem. Chem. Phys. 6: 4882–4889.

      279 279 Hillier, W. and Wydrzynski, T. (2008). Coord.Chem. Rev. 252: 306–317.

      280 280 Cox, N. and Messinger, J. (2013). Biochim. Biophys. Acta, Bioenerg. 1827: 1020–1030.

      281 281 Siegbahn, P.E.M. (2008). Chem. Eur. J. 14: 8290–8302.

      282 282 Siegbahn, P.E.M. (2009). Acc. Chem. Res. 42: 1871–1880.

      283 283 Siegbahn, P.E.M. (2011). J. Photochem. Photobiol., B 104: 94–99.

      284 284 Siegbahn, P.E.M. (2012). Phys. Chem. Chem. Phys. 14: 4849–4856.

      285 285 Siegbahn, P.E.M. (2013). Biochim. Biophys. Acta, Bioenerg. 1827: 1003–1019.

      286 286 Siegbahn, P.E.M. (2014). Phys. Chem. Chem. Phys. 16: 11893–11900.

      287 287 Li, X. and Siegbahn, P.E.M. (2015). Phys. Chem. Chem. Phys. 17: 12168–12174.

      288 288 Guo, Y., Li, H., He, L.‐L. et al. (2017). Phys. Chem. Chem. Phys. 19: 13909–13923.

      289 289 Krewald, V., Neese, F., and Pantazis, D.A. (2019). J. Inorg. Biochem. 199: 110797.

      290 290 Shoji, M., Isobe, H., Shigeta, Y. et al. (2018). Chem. Phys. Lett. 698: 138–146.

      291 291 Siegbahn, P.E.M. and Crabtree, R.H. (1999). J. Am. Chem. Soc. 121: 117–127.

      292 292 K. Yamaguchi, Y. Takahara, T. Fueno, in Applied Quantum Chemistry (Eds.: V. H. Smith Jr., H. F. Scheafer III, K. Morokuma), D. Reidel, Boston, MA, 1986, pp. 155‐184.

      293 293 Lassalle‐Kaiser, B., Hureau, C., Pantazis, D.A. et al. (2010). Energy Environ. Sci. 3: 924–938.

      294 294 Krishtalik, L.I. (1986). Biochim. Biophys. Acta, Bioenerg. 849: 162–171.

      295 295 Krishtalik, L.I. (1990). Bioelectrochem. Bioenerg. 23: 249–263.

      296 296 Zhang, B. and Sun, L. (2018). Dalton Trans. 47: 14381–14387.

      297 297 Najafpour, M.M., Heidari, S., Balaghi, S.E. et al. (2017). Biochim. Biophys. Acta, Bioenerg. 1858: 156–174.

      298 298 Kawashima, K., Takaoka, T., Kimura, H. et al. (2018). Nat. Commun. 9: 1247.

      299 299 Shoji, M., Isobe, H., Shigeta, Y. et al. (2018). J. Phys. Chem. B 122: 6491–6502.

      300 300 Shoji, M., Isobe, H., and Yamaguchi, K. (2019). Chem. Phys. Lett. 714: 219–226.

      301 301 Yamaguchi, K., Shoji, M., Isobe, H. et al. (2018). Mol. Phys. 116: 717–745.

      302 302 Paul, S., Neese, F., and Pantazis, D.A. (2017). Green Chem. 19: 2309–2325.

      303 303 Meelich, K., Zaleski, C.M., and Pecoraro, V.L. (2008). Philos. Trans. R. Soc. B 363: 1271–1281.

      304 304 Mukhopadhyay, S., Mandal, S.K., Bhaduri, S., and Armstrong, W.H. (2004). Chem. Rev. 104: 3981–4026.

      305 305 Mishra, A., Wernsdorfer, W., Abboud, K.A., and Christou, G. (2005). Chem. Commun.: 54–56.

      306 306 Koumousi, E.S., Mukherjee, S., Beavers, C.M. et al. (2011). Chem. Commun. 47: 11128–11130.

      307 307 Kanady, J.S., Tsui, E.Y., Day, M.W., and Agapie, T. (2011). Science 333: 733–736.

      308 308 Mukherjee, S., Stull, J.A., Yano, J. et al. (2012). Proc. Natl. Acad. Sci. U.S.A. 109: 2257–2262.

      309 309 Tsui, E.Y., Kanady, J.S., and Agapie, T. (2013). Inorg. Chem. 52: 13833–13848.

      310 310 Kanady, J.S., Lin, P.‐H., Carsch, K.M. et al. (2014). J. Am. Chem. Soc. 136: 14373–14376.

      311 311 Han, Z., Horak, K.T., Lee, H.B., and Agapie, T. (2017). J. Am. Chem. Soc. 139: 9108–9111.

      312 312 Lee, H.B., Tsui, E.Y., and Agapie, T. (2017). Chem. Commun. 53: 6832–6835.

      313 313 Lee, H.B., Shiau, A.A., Oyala, P.H. et al. (2018). J. Am. Chem. Soc. 140: 17175–17187.

      314 314 Zhang, C., Chen, C., Dong, H. et al. (2015). Science 348: 690–693.

      315 315 Chen, C., Li, Y., Zhao, G. et al. (2017). ChemSusChem 10: 4403–4408.

      316 316 Chen, C., Chen, Y., Yao, R. et al. (2019). Angew. Chem. Int. Ed. 58: 3939–3942.

      317 317 Gerey, B., Gouré, E., Fortage, J. et al. (2016). Coord. Chem. Rev. 319: 1–24.

      318 318 Li, Y., Yao, R., Chen, Y. et al. (2020). Catalysts 10: 185.

      319 319 Tsui, E.Y. and Agapie, T. (2013). Proc. Natl. Acad. Sci. U.S.A. 110: 10084–10088.

      320 320 Tsui, E.Y., Tran, R., Yano, J., and Agapie, T. (2013). Nat. Chem. 5: 293–299.

      321 321 Krewald, V., Neese, F., and Pantazis, D.A. (2016). Phys. Chem. Chem. Phys. 18: 10739–10750.

      322 322 Krewald, V. and Pantazis, D.A. (2016). Dalton Trans. 45: 18900–18908.

      323 323 Romain, S., Rich, J., Sens, C. et al. (2011). Inorg. Chem. 50: 8427–8436.

      324 324 Kurz, P. (2016). Top. Curr. Chem. 371: 49–72.

      325 325 Frey, C.E., Wiechen, M., and Kurz, P. (2014). Dalton Trans. 43: 4370–4379.

      326 326 Menezes, P.W., Indra, A., Littlewood, P. et al. (2014). ChemSusChem. 7: 2202–2211.

      327 327 Najafpour, M.M., Abbasi Isaloo, M., Abasi, M., and Holynska, M. (2014). New J. Chem. 38: 852–858.

      328 328 Wiechen, M., Najafpour, M.M., Allakhverdiev, S.I., and Spiccia, L. (2014). Energy Environ. Sci. 7: 2203–2212.

      329 329 Najafpour, M.M., Renger, G., Hołyńska, M. et al. (2016). Chem. Rev. 116: 2886–2936.

      330 330 Llobet, A. (2014). Molecular Water Oxidation Catalysis, Chichester: Wiley, p. 265.

      331 331 Blakemore, J.D., Crabtree, R.H., and Brudvig, G.W. (2015). Chem. Rev. 115: 12974–13005.

      332 332 Young, K.J., Brennan, B.J., Tagore, R., and Brudvig, G.W. (2015). Acc. Chem. Res. 48: 567–574.

      333 333 Zhang, Q. and Guan, J. (2019). ChemSusChem 12: 3209–3235.

      334 334 Kärkäs, M.D., Verho, O., Johnston, E.V., and Åkermark, B. (2014). Chem. Rev. 114: 11863–12001.

      335 335 Arafa, W.A.A., Karkas, M.D., Lee, B.‐L. et al. (2014). Phys. Chem. Chem. Phys.

      336 336 Sala, X., Romero, I., Rodríguez, M. et al. (2009). Angew. Chem. Int. Ed. 48: 2842–2852.

      337 337 Zhang, B. and Sun, L. (2019). Chem. Soc. Rev. 48: 2216–2264.

      338 338 Parent, A.R. and Sakai, K. (2014). ChemSusChem 7: 2070–2080.

      339 339 Liao, R.‐Z., Kärkäs, M.D., Lee, B.‐L. et al. (2015). Inorg. Chem. 54: 342–351.

      340 340 Fukuzumi, S., Lee, Y.‐M., and Nam, W. (2019). Dalton Trans. 48: 779–798.

      341 341 Kärkäs, M.D. and Åkermark, B. (2016). Dalton Trans. 45: 14421–14461.

      342 342 Garrido‐Barros, P., Gimbert‐Suriñach, C., Matheu, R. et al. (2017). Chem. Soc. Rev. 46: 6088–6098.

      343 343 Ye, S., Ding, C.,