Solar-to-Chemical Conversion. Группа авторов

Читать онлайн.
Название Solar-to-Chemical Conversion
Автор произведения Группа авторов
Жанр Химия
Серия
Издательство Химия
Год выпуска 0
isbn 9783527825080



Скачать книгу

438: 1040–1044.

      54 54 Guskov, A., Kern, J., Gabdulkhakov, A. et al. (2009). Nat. Struct. Mol. Biol. 16: 334–342.

      55 55 Umena, Y., Kawakami, K., Shen, J.‐R., and Kamiya, N. (2011). Nature 473: 55–60.

      56 56 Tanaka, A., Fukushima, Y., and Kamiya, N. (2017). J. Am. Chem. Soc. 139: 1718–1721.

      57 57 Suga, M., Akita, F., Hirata, K. et al. (2015). Nature 517: 99–103.

      58 58 Suga, M., Akita, F., Sugahara, M. et al. (2017). Nature 543: 131–135.

      59 59 Kern, J., Alonso‐Mori, R., Hellmich, J. et al. (2012). Proc. Natl. Acad. Sci. U.S.A. 109: 9721–9726.

      60 60 Kupitz, C., Basu, S., Grotjohann, I. et al. (2014). Nature 513: 261–265.

      61 61 Young, I.D., Ibrahim, M., Chatterjee, R. et al. (2016). Nature 540: 453–457.

      62 62 Kern, J., Tran, R., Alonso‐Mori, R. et al. (2014). Nat. Commun. 5: 4371.

      63 63 Kern, J., Chatterjee, R., Young, I.D. et al. (2018). Nature 563: 421–425.

      64 64 Wei, X., Su, X., Cao, P. et al. (2016). Nature 534: 69–74.

      65 65 Su, X., Ma, J., Wei, X. et al. (2017). Science 357: 815.

      66 66 Becker, K., Cormann, K.U., and Nowaczyk, M.M. (2011). J. Photochem. Photobiol., B 104: 204–211.

      67 67 Shi, L.‐X., Hall, M., Funk, C., and Schröder, W.P. (2012). Biochim. Biophys. Acta, Bioenerg. 1817: 13–25.

      68 68 Fagerlund, R.D. and Eaton‐Rye, J.J. (2011). J. Photochem. Photobiol., B 104: 191–203.

      69 69 Bricker, T.M., Roose, J.L., Fagerlund, R.D. et al. (2012). Biochim. Biophys. Acta, Bioenerg. 1817: 121–142.

      70 70 Pagliano, C., Saracco, G., and Barber, J. (2013). Photosynth. Res. 116: 167–188.

      71 71 Rutherford, A.W., Osyczka, A., and Rappaport, F. (2012). FEBS Lett. 586: 603–616.

      72 72 Mokvist, F., Sjöholm, J., Mamedov, F., and Styring, S. (2014). Biochemistry 53: 4228–4238.

      73 73 Cardona, T., Sedoud, A., Cox, N., and Rutherford, A.W. (2012). Biochim. Biophys. Acta, Bioenerg. 1817: 26–43.

      74 74 Diner, B.A. and Rappaport, F. (2002). Annu. Rev. Plant Biol. 53: 551–580.

      75 75 Saito, K., Ishida, T., Sugiura, M. et al. (2011). J. Am. Chem. Soc. 133: 14379–14388.

      76 76 Narzi, D., Bovi, D., De Gaetano, P., and Guidoni, L. (2015). J. Am. Chem. Soc. 138: 257–264.

      77 77 Suomivuori, C.‐M., Winter, N.O.C., Hättig, C. et al. (2016). Theory Comput. 12: 2644–2651.

      78 78 Brinkert, K., De Causmaecker, S., Krieger‐Liszkay, A. et al. (2016). Proc. Natl. Acad. Sci. U.S.A. 113: 12144–12149.

      79 79 Müh, F., Glöckner, C., Hellmich, J., and Zouni, A. (2012). Biochim. Biophys. Acta, Bioenerg. 1817: 44–65.

      80 80 Müh, F. and Zouni, A. (2013). Photosynth. Res. 116: 295–314.

      81 81 Fletcher, S. (2015). J. Solid State Electrochem. 19: 241–250.

      82 82 Saito, K., Shen, J.‐R., Ishida, T., and Ishikita, H. (2011). Biochemistry 50: 9836–9844.

      83 83 Kuroda, H., Kodama, N., Sun, X.‐Y. et al. (2014). Plant Cell Physiol. 55: 1266–1275.

      84 84 Kawashima, K., Saito, K., and Ishikita, H. (2018). Biochemistry 57: 4997–5004.

      85 85 Chrysina, M., de Mendonça Silva, J.C., Zahariou, G. et al. (2019). J. Phys. Chem. B 123: 3068–3078.

      86 86 Chrysina, M., Zahariou, G., Sanakis, Y. et al. (2011). J. Photochem. Photobiol., B 104: 72–79.

      87 87 Vermaas, W.F.J., Renger, G., and Dohnt, G. (1984). Biochim. Biophys. Acta, Bioenerg. 764: 194–202.

      88 88 Messinger, J. and Renger, G. (1993). Biochemistry 32: 9379–9386.

      89 89 Faller, P., Debus, R.J., Brettel, K. et al. (2001). Proc. Natl. Acad. Sci. U.S.A. 98: 14368–14373.

      90 90 Rutherford, A.W., Boussac, A., and Faller, P. (2004). Biochim. Biophys. Acta, Bioenerg. 1655: 222–230.

      91 91 Diner, B.A., Bautista, J.A., Nixon, P.J. et al. (2004). Phys. Chem. Chem. Phys. 6: 4844–4850.

      92 92 Jeans, C., Schilstra, M.J., Ray, N. et al. (2002). Biochemistry 41: 15754–15761.

      93 93 Boussac, A. and Etienne, A.L. (1982). Biochem. Biophys. Res. Commun. 109: 1200–1205.

      94 94 Styring, S., Sjöholm, J., and Mamedov, F. (2012). Biochim. Biophys. Acta, Bioenerg. 1817: 76–87.

      95 95 Sjöholm, J., Mamedov, F., and Styring, S. (2014). Biochemistry 53: 5721–5723.

      96 96 Ahmadova, N., Ho, F.M., Styring, S., and Mamedov, F. (2017). Biochim. Biophys. Acta, Bioenerg. 1858: 407–417.

      97 97 Saito, K., Rutherford, A.W., and Ishikita, H. (2013). Proc. Natl. Acad. Sci. U.S.A. 110: 7690–7695.

      98 98 Sirohiwal, A., Neese, F., and Pantazis, D.A. (2019). J. Am. Chem. Soc. 141: 3217–3231.

      99 99 Romero, E., Novoderezhkin, V.I., and van Grondelle, R. (2017). Nature 543: 355–365.

      100 100 Krieger‐Liszkay, A., Fufezan, C., and Trebst, A. (2008). Photosynth. Res. 98: 551–564.

      101 101 van Wijk, K.J., Nilsson, L.O., and Styring, S. (1994). J. Biol. Chem. 269: 28382–28392.

      102 102 Nixon, P.J., Michoux, F., Yu, J. et al. (2010). Ann. Bot. 106: 1–16.

      103 103 Jarvi, S., Suorsa, M., and Aro, E.M. (2015). Biochim. Biophys. Acta 1847: 900–909.

      104 104 Meyer, T.J. (1989). Acc. Chem. Res. 22: 163–170.

      105 105 Wasielewski, M.R. (1992). Chem. Rev. 92: 435–461.

      106 106 Wasielewski, M.R. (2009). Acc. Chem. Res. 42: 1910–1921.

      107 107 Redmore, N.P., Rubtsov, I.V., and Therien, M.J. (2003). J. Am. Chem. Soc. 125: 8769–8778.

      108 108 Hammarström, L. and Styring, S. (2011). Energy Environ. Sci. 4: 2379–2388.

      109 109 Kodis, G., Liddell, P.A., Moore, A.L. et al. (2004). J. Phys. Org. Chem. 17: 724–734.

      110 110 Liddell, P.A., Kuciauskas, D., Sumida, J.P. et al. (1997). J. Am. Chem. Soc. 119: 1400–1405.

      111 111 Gust, D., Moore, T.A., and Moore, A.L. (2009). Acc. Chem. Res. 42: 1890–1898.

      112 112 Gust, D., Moore, T.A., and Moore, A.L. (2012). Faraday Discuss. 155: 9–26.

      113 113 Sun, L.C., Hammarström, L., Åkermark, B., and Styring, S. (2001). Chem. Soc. Rev. 30: 36–49.

      114 114 Karlsson, E.A., Lee, B.‐L., Åkermark, T. et al. (2011). Angew. Chem. Int. Ed. 50: 11715–11718.

      115 115 Kärkäs, M.D., Johnston, E.V., Verho, O., and Åkermark, B. (2014). Acc. Chem. Res. 47: 100–111.

      116 116 Hammarström, L. (2015). Acc. Chem. Res. 48: 840–850.

      117 117 Dasgupta, J., Ananyev, G.M., and Dismukes, G.C. (2008). Coord. Chem. Rev. 252: 347–360.

      118 118 Petrouleas, V., Koulougliotis, D., and Ioannidis, N. (2005). Biochemistry 44: 6723–6728.

      119 119 Havelius, K.G.V., Sjöholm, J., Ho, F. et al. (2010). Appl. Magn. Reson. 37: 151–176.

      120 120 Ioannidis, N., Zahariou, G., and Petrouleas, V. (2006). Biochemistry 45: 6252–6259.

      121 121 Zahariou, G., Chrysina, M., Petrouleas, V., and Ioannidis, N. (2014). FEBS Lett. 588: 1827–1831.

      122 122 Zahariou, G. and Ioannidis, N. (2016). Photosynth. Res. 130: 417–426.

      123 123 Havelius, K.G.V., Su, J.‐H., Han, G. et al. (2011). Biochim. Biophys. Acta, Bioenerg. 1807: 11–21.

      124 124 Cox, N., Ho, F.M., Pewnim, N. et al. (2009). Biochim. Biophys. Acta, Bioenerg. 1787: 882–889.

      125 125