Технический риск (элементы анализа по этапам жизненного цикла ЛА). В. Б. Живетин

Читать онлайн.



Скачать книгу

(ФПК). Однако при размерности вектора x(t) ограничиваемых параметров больше трех, решение ФПК-уравнения представляет собой трудноразрешимую задачу. В этом случае используют различные процедуры, упрощающие вычисления W(xi,t), где xi – процесс, подлежащий контролю, ограничению и прогнозированию, т. е. вычислению xi(t + Δt), где Δt > 0, а также моделированию его с помощью известных технических средств.

      Пусть задана техническая система (объект), на выходе которой возможна регистрация процесса xi = z(t). Требуется построить математическую модель процесса z(t). Пусть поставлен эксперимент, в котором измерены значения z(t) с погрешностями δ, в результате получено z(t) = zф + δ, где zф – фактическое значение z(t); для z(t) построены одномерная плотность распределения ω(z) и корреляционная функция Bz(τ). Построение математической модели процесса z(t) осуществляется в три этапа.

      На первом этапе производится аппроксимация одномерной плотности распределения ω(z) изучаемого процесса z(t) плотностью S-распределения Джонсона [19, 20]. При этом исключаются из рассмотрения те процессы, которые не могут быть аппроксимированы указанным образом. Поскольку класс плотностей S-распределения Джонсона образован тремя семействами (SB, SU и SL-распределения), то аппроксимация распределений ω(z) заключается в выборе соответствующего семейства плотностей S-распределения и в определении его параметров. Процедура такой аппроксимации описана в работе [6]. Следует только добавить, что исходной информацией для аппроксимации являются первые четыре момента распределения процесса z(t), которые, в общем случае, следует предварительно вычислить. Для некоторых видов плотности распределения ω(z) эти моменты указаны в справочной литературе. После того, как для ω(z) определено соответствующее S-распределение, для построения математической модели искомого процесса z(t) необходимо описать нормированный гауссовский процесс y(t) и подвергнуть его нелинейному преобразованию Джонсона. Указанное преобразование будет иметь вид

      если плотность ω(z) представима в виде плотности SB-распределения Джонсона;

      если плотность ω(z) пред ставима в виде плотности SU-распределения Джонсона;

      если плотность ω(z) представима в виде плотности SL-распределения Джонсона.

      Входящие в выражения (1.10)÷(1.12) параметры λ, γ, η и ε являются параметрами, соответствующими S-распределению Джонсона. Таким образом,

      z(t) = ψj(y(t)),                  (113)

      где 1 ≤ j ≤ 3 в зависимости от вида плотности S-распределения Джонсона, аппроксимирующей заданную плотность ω(z).

      Для того, чтобы случайный процесс z(t) имел заданную корреляционную функцию Bz(τ), необходимо подобрать соответствующую функцию (обозначим ее ρy(τ)) нормированному гауссовскому процессу y(t), подвергаемому нелинейному преобразованию ψj(·) (1 ≤ j ≤ 3). Поэтому на втором этапе проводится расчет корреляционной функции ρy(r), который осуществляется по формуле

      где