Название | Biosurfactants for a Sustainable Future |
---|---|
Автор произведения | Группа авторов |
Жанр | Биология |
Серия | |
Издательство | Биология |
Год выпуска | 0 |
isbn | 9781119671053 |
44 44 Handelsman, J., Liles, M., Mann, D., and Riesenfeld, C. (2002). Cloning the metagenome: Culture‐independent access to the diversity and functions of the uncultivated microbial world. Methods Microbiol. 33: 241–255.
45 45 Rondon, M.R., August, P.R., Bettermann, A.D. et al. (2000). Cloning the soil metagenome: a strategy for accessing the genetic and functional diversity of uncultured microorganisms. Appl. Environ. 66(6):2541–2547.
46 46 Jackson, S.A., Borchert, E., O'Gara, F., and Dobson, A.D. (2015). Metagenomics for the discovery of novel biosurfactants of environmental interest from marine ecosystems. Curr. Opin. Biotechnol. 33: 176–182.
47 47 Kennedy, J., O'Leary, N.D., Kiran, G.S. et al. (2011). Functional metagenomic strategies for the discovery of novel enzymes and biosurfactants with biotechnological applications from marine ecosystems. J. Appl. Microbiol. 111: 787–799.
48 48 Gloux, K., Leclerc, M., Iliozer, H. et al. (2007). Development of high‐throughput phenotyping of metagenomic clones from the human gut microbiome for modulation of eukaryotic cell growth. Appl. Environ. Microbiol. 73: 3734–3737.
49 49 Gurgui, C. and Piel, J. (2010). Metagenomic approaches to identify and isolate bioactive natural products from microbiota of marine sponges. In: Metagenomics: Methods and Protocols, Methods in Molecular Biology (eds. W.R. Streit and R. Daniel), 247–263. Berlin: Springer Science + Business Media.
50 50 Zhou, J., Bruns, M., and Tiedje, J.M. (1996). DNA recovery from soils of diverse composition. Appl. Environ. Microbiol. 62: 316–322.
51 51 Walter, V., Syldatk, C., and Hausmann, R. (2010). Screening concepts for the isolation of biosurfactant producing microorganisms. In: Biosurfactants (ed. R. Sen), 1–13. New York: Landes Bioscience and Springer Science.
52 52 Weber, T., Blin, K., Duddela, S. et al. (2015). AntiSMASH 3.0 – a comprehensive resource for the genome mining of biosynthetic gene clusters. Nucleic Acids Res. 43: 1–7.
53 53 Altschul, S.F., Gish, W., Miller, W. et al. (1990). Basic local alignment search tool. J. Mol. Biol. 215: 403–410.
54 54 Suenaga, H. (2012). Targeted metagenomics: A high‐resolution metagenomics approach for specific gene clusters in complex microbial communities. Environ. Microbiol. 14: 13–22. https://doi.org/10.1111/j.1462‐2920.2011.02438.x.
55 55 Tuffin, M., Anderson, D., Heath, C., and Cowan, D. (2009). Metagenomic gene discovery: How far have we moved into novel sequence space? Biotechnol. J. 4: 1671–1683.
56 56 Ekkers, D.M., Cretoiu, M.S., Kielak, A.M., and Elsas, J.D. (2012). The great screen anomaly — a new frontier in product discovery through functional metagenomics. Appl. Microbiol. Biotechnol. 93: 1005–1020.
57 57 Montiel, D., Kang, H.‐S., Chang, F.‐Y. et al. (2015). Yeast homologous recombination‐based promoterengineering for the activation of silent natural product biosynthetic gene clusters. Proc. Natl. Acad. Sci. USA. 112 (29): 8953–8958. https://doi.org/10.1073/pnas.1507606112.
58 58 Chen, Y. and Murrell, J.C. (2010). When metagenomics meets stable‐isotopes probing: Progress and perspectives. Trends Microbiol. 18: 4.
59 59 Dumont, M.G. and Murrell, J.C. (2005). Stable isotope probing – Linking microbial identity to function. Nat. Rev. Microbiol. 3: 499–504.
60 60 Binga, E.K., Lasken, R.S., and Neufeld, J.D. (2008). Something from (almost) nothing: The impact of multiple displacement amplification on microbial ecology. ISME J. 2: 233–241.
61 61 Burch, A.Y., Browne, P.J., Dunlap, C.A. et al. (2011). Comparison of biosurfactant detection methods reveals hydrophobic surfactants and contact‐regulated production. Environ. Microbiol. 13: 2681–2691.
62 62 He, S., Ni, Y., Lu, L. et al. (2020). Simultaneous degradation of n‐hexane and production of biosurfactants by Pseudomonas sp. strain NEE2 isolated from oil‐contaminated soils. Chemosphere 242: 125237.
63 63 Lenchi, N., Kebbouche‐Gana, S., Servais, P. et al. (2020). Disel biodegradation capacities and biosurfactants production in saline‐alkaline conditions by Delftia sp. NL1, isolated from an Algerian oilfield. Geomicrobiol. J. https://doi.org/10.1080/01490451.2020.1722769.
64 64 Siegmund, I. and Wagner, F. (1991). New method for detecting rhamnolipids excreted by Pseudomonas species during growth on mineral agar. Biotechnol. Tech. 5: 265–268.
65 65 Bodour, A.A. and Maier, R.M. (1998). Application of a modified drop collapse technique for surfactant quantification and screening of biosurfactant‐producing microorganisms. J. Microbiol. Methods 32: 273–280.
66 66 Burch, A.Y., Shimada, B.K., Browne, P.J., and Lindow, S.E. (2010). Novel high‐throughput detection method to assess bacterial surfactant production. Appl. Environ. Microbiol. 76: 5363–5372.
67 67 Thavasi, R., Sharma, S., and Jayalakshmi, S. (2011). Evaluation of screening methods for the isolation of biosurfactant producing marine bacteria. J. Pet. Environ. Biotechnol. S1: 001.
68 68 Batista, S.B., Mounteer, A.H., Amorim, F.R., and Totola, M.R. (2006). Isolation and characterization of biosurfactant/bioemulsifier‐producing bacteria from petroleum contaminated sites. Bioresour. Technol. 97: 868–875.
69 69 Rosenberg, M., Gutnick, D., and Rosenberg, E. (1980). Adherence to bacteria to hydrocarbons: A simple method for measuring cell‐surface hydrophobicity. FEMS Microbiol. Lett. 9: 29–33.
70 70 Gidudu, B., Mudenda, E., and Chirwa, E.M.N. (2020). Biosurfactant produced by Serrati sp. and its application in bioremediation enhancement of oil sludge. Chem. Eng. Trans. 79: 433–438.
71 71 Ashitha, A., Radhakrishnan, E.K., and Jyothis, M. (2020). Characterization of biosurfactant produced by the endophyte Burkholderia sp. WYAT7 and evaluation of its antibacterial and antibiofilm potentials. J. Biotechnol. https://doi.org/10.1016/j.jbiotec.2020.03.005.
72 72 Charlop‐Powers, Z., Milshteyn, A., and Brady, S.F. (2014). Metagenomic small molecule discovery methods. Curr. Opin. Microbiol. 19C: 70–75.
73 73 Kim, J.H., Feng, Z., Bauer, J.D. et al. (2010). Cloning large natural product gene clusters from the environment: Piecing environmental DNA gene clusters back together with TAR. Biopolymers 93: 833–844.
74 74 Owen, J.G., Reddy, B.V.B., Ternei, M.A. et al. (2013). Mapping gene clusters within arrayed metagenomic libraries to expand the structural diversity of biomedically relevant natural products. Proc. Natl. Acad. Sci. USA. 110: 11797–11802.
75 75 Loeschcke, A., Markert, A., Wilhelm, S. et al. (2013). TREX: a universal tool for the transfer and expression of biosynthetic pathways in bacteria. ACS Synth. Biol. 2: 22–33.
76 76 Ferrer, M., Chernikova, T.N., Yakimov, M.M. et al. (2003). Chaperonins govern growth of Escherichia coli at low temperatures. Nat. Biotechnol. 21: 1266–1267.
77 77 Makrides, S.C. (1996). Strategies for achieving high‐level expression of genes in Escherichia coli. Microbiol. Rev. 60: 512–538.
78 78 Van Elsas, J.D., Speksnijder, A.J., and van Overbeek, L.S. (2008). A procedure for the metagenomics exploration of disease‐suppressive soils. J. Microbiol. Methods 75: 515–522.
79 79 Kakirde, K.S., Parsley, L.C., and Liles, M.R. (2010). Size does matter: Application‐driven approaches for soil metagenomics. Soil Biol. Biochem. 42: 1911–1923.
3 Biosurfactant Production Using Bioreactors from Industrial Byproducts
Arun Karnwal
Department of Microbiology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India