Biosurfactants for a Sustainable Future. Группа авторов

Читать онлайн.
Название Biosurfactants for a Sustainable Future
Автор произведения Группа авторов
Жанр Биология
Серия
Издательство Биология
Год выпуска 0
isbn 9781119671053



Скачать книгу

Design, synthesis and characterization of cationic peptide and steroid antibiotics. Eur. J. Org. Chem. 759‐768.

      31 31 Traube, I. (1940). The earliest history of capillary chemistry. J. Chem. Educ. 17: 324–329.

      32 32 Guthrie, F. (1864). II. On drops. Proc. R. Soc. London, Ser. B 13: 444–457.

      33 33 Guthrie, F. (1864). On drops. Part II. Proc. R. Soc. London, Ser. B 13: 457–483.

      34 34 Musculus, C. (1864). Ueber die Veränderungen der Molecularcohäsion des Wassers (about the changes of the molecular cohesion of water). Chem. Zentralbl. 922.

      35 35 Yadav, J.B. (2010). Advanced Practical Physical Chemistry. India: Krishna Prakashan Media.

      36 36 Dorsey, N.E. (1926). Measurement of the surface tension. Sci. Paper 21: 563–595.

      37 37 Tate, T. (1864). On the magnitude of a drop of liquid formed under different circumstances. Philos. Mag. 27: 176–180.

      38 38 Milner, S.R. (1907). IV. On surface concentration, and the formation of liquid films. London, Edinburgh Dublin Philos. Mag. J. Sci. 13: 96–110.

      39 39 Langmuir, I. (1917). The shapes of group molecules forming the surfaces of liquids. Proc. Natl. Acad. Sci. USA 3: 251–257.

      40 40 Malfitano, G. (1909). On the properties of colloidal particles called micellae. Compt. Rend. 148: 1045.

      41 41 Wyrouboff, G. (1901). Some remarks over the colloids. Bull. Soc. Chim. Fr. 25: 1016–1022.

      42 42 McBain, J.W. and Salmon, C.S. (1920). Colloidal electrolytes. Soap solutions and their constitution. J. Am. Chem. Soc. 42: 426–460.

      43 43 Laing, M.E. and McBain, J.W. (1920). Investigations of sodium oleate solutions in the three physical states of curd, gel and sol. J. Chem. Soc. Trans. 117: 1508–1528.

      44 44 McBain, J.W. and Jenkins, W.J. (1922). Ultrafiltration of soap solutions. Sodium oleate and potassium laurate. J. Chem. Soc., Trans. 121: 2325–2344.

      45 45 Grindley, J. and Bury, C.R. (1929). The densities of butyric acid–water mixtures. J. Chem. Soc.: 679–684.

      46 46 Davies, D.G. and Bury, C.R. (1930). The partial specific volume of potassium octoate in aqueous solution. J. Chem. Soc.: 2263–2267.

      47 47 Powney, J. and Addison, C.C. (1937). The properties of detergent solutions. II. The surface and interfacial tensions of aqueous solutions of alkyl sodium sulfates. Trans. Faraday Soc. 33: 1243–1253.

      48 48 Krafft, F. and Wiglow, H. (1895). Behaviour of the alkali salts of the fatty acids and of soaps in presence of water. Ber. Dtsch. Chem. Ges. 28: 2566–2573, 2573–2582.

      49 49 Hutchinson, E., Inaba, A., and Baley, L.G. (1955). The properties of colloidal electrolyte solutions. Z. Phys. Chem. 5: 344–371.

      50 50 Shinoda, K. and Hutchinson, E. (1962). Pseudo‐phase separation model for thermodynamic calculations on micellar solutions. J. Phys. Chem. 66: 577–582.

      51 51 Nilsson, G. (1957). The adsorption of Tritiated sodium dodecyl sulfate at the solution surface measured with a windowless, high humidity gas flow proportional counter. J. Phys. Chem. 57: 1135–1142.

      52 52 Allen, G.D. (1915). The determination of the bile salts in urine by means of the surface tension method. J. Biol. Chem. 22: 505–524.

      53 53 Reis, S., Guimaraes Moutinho, C., Matos, C. et al. (2004). Noninvasive methods to determine the critical micelle concentration of some bile acid salts. Anal. Biochem. 334: 117–126.

      54 54 Atkins, P.W. and de Paula, J. (2002). Physical Chemistry, 7e. Oxford: Oxford University.

      55 55 Menger, F.M., Shi, L., and Rizvi, S.A.A. (2009). Re‐evaluating the Gibbs analysis of surface tension at the air/water Interface. J. Am. Chem. Soc. 131: 10380–10381.

      56 56 Menger, F.M. and Rizvi, S.A.A. (2011). Relationship between surface tension and surface coverage. Langmuir 27: 13975–13977.

      57 57 Li, P.X., Thomas, R.K., and Penfold, J. (2014). Limitations in the use of surface tension and the Gibbs equation to determine surface excesses of cationic surfactants. Langmuir 30: 6739–6747.

      58 58 Xu, H., Li, P.X., Ma, K. et al. (2013). Limitations in the application of the Gibbs equation to anionic surfactants at the air/water surface: Sodium dodecylsulfate and sodium dodecylmonooxyethylenesulfate above and nelow the CMC. Langmuir 29: 9335–9351.

      59 59 Tartar, H.V. and Wright, K.A. (1939). Sulfonates. III. Solubilities, micelle formation and hydrates of the sodium salts of the higher alkyl sulfonates. J. Am. Chem. Soc. 61: 539–544.

      60 60 Wright, K.A. and Tartar, H.V. (1939). Studies of sulfonates. IV. Densities and viscosities of sodium dodecyl sulfonate solutions in relation to micelle formation. J. Am. Chem. Soc. 61: 544–549.

      61 61 Wright, K.A., Abbott, A.D., Sivertz, V., and Tartar, H.V. (1939). Sulfonates. V. Electrical conductance of sodium decyl‐, dodecyl‐ and hexadecyl‐sulfonate solutions at 40°, 60° and 80°. Micelle formation. J. Am. Chem. Soc. 61: 549–551.

      62 62 Hartley, G.S. (1936). Critical concentration for micelles in solutions of cetanesulfonic acid. J. Am. Chem. Soc. 58: 2347–2354.

      63 63 Hartley, G.S. (1939). Ion aggregation in solutions of salts with long paraffin chains. Kolloidn. Zh. 88: 22–40.

      64 64 Corrin, M.L. and Harkins, W.D. (1947b). The effect of salts on the critical concentration for the formation of micelles in colloidal electrolytes. J. Am. Chem. Soc. 67: 683–688.

      65 65 Lange, H. (1950). Application of the law of mass action to micelle formation in colloidal electrolytes. Kolloidn. Zh. 117: 48–51.

      66 66 Hall, D.G. (1981). Thermodynamics of solutions of polyelectrolytes, ionic surfactants, and other charged colloidal system. J. Chem. Soc. Faraday Trans. 1 (77): 1121–1156.

      67 67 Corrin, M.L. and Harkins, W.D. (1946a). The effect of solvents on the critical concentration for micelle formation of cationic soaps. J. Chem. Phys. 14: 640–641.

      68 68 Herzfeld, S.H., Corrin, M.L., and Harkins, W.D. (1950). The the effect of alcohols and of alcohols and salts on the critical micelle concentration of dodecylammonium chloride. J. Phys. Colloid Chem. 54: 271–283.

      69 69 Reichenberg, D. (1947). Colloidal crystallites and micelles. I. The micelle in solution. Apparent anomalies in the surface‐ and interfacial‐tension‐concentration curves of aqueous solutions of paraffin‐chain salts. Trans. Faraday Soc. 43: 467–479.

      70 70 Klevens, H.B. (1947a). Effects of temperature on the critical concentrations of anionic and cationic detergents. J. Phys. Chem. 51: 1143–1154.

      71 71 Klevens, H.B. (1947b). Effect of temperature on micelle formation as determined by refraction. J. Colloid Sci. 2: 301–303.

      72 72 Sheppard, S.E. and Geddes, A.L. (1945). Amphipathic character of proteins and certain lyophile colloids as indicated by absorption spectra of dyes. J. Chem. Phys. 13: 63.

      73 73 Corrin, M.L., Klevens, H.B., and Harkins, W.D. (1946). Critical concentration for the formation of micelles as indicated by the absorption spectrum of a cyanine dye. J. Chem. Phys. 14: 216–217.

      74 74 Klevens, H.B. (1946). The critical micelle concentration of anionic soap mixtures. J. Chem. Phys. 14: 742.

      75 75 Corrin, M.L., Klevens, H.B., and Harkins, W.D. (1946.a). The determination of critical concentrations for the formation of soap micelles by the spectral behavior of pinacyanol chloride. J. Chem. Phys. 14: 480–486.

      76 76 Kolthoff, I.M. and Johnson, W.F. (1946). Solubilization of p‐dimethylaminoazobenzene in soap solutions. J. Phys. Chem. 50: 440–442.

      77 77 Corrin, M.L. and Harkins, W.D. (1946). Determination of critical concentrations for micelle formation in solutions of cationic soaps by changes in the color and fluorescence of dyes. J. Chem. Phys. 14: 641.

      78 78 Corrin, M.L. and Harkins, W.D. (1947). Determination of the critical concentration for micelle formation in solutions of colloidal electrolytes by the spectral change of a dye. J. Am. Chem.