Название | Biosurfactants for a Sustainable Future |
---|---|
Автор произведения | Группа авторов |
Жанр | Биология |
Серия | |
Издательство | Биология |
Год выпуска | 0 |
isbn | 9781119671053 |
31 31 Traube, I. (1940). The earliest history of capillary chemistry. J. Chem. Educ. 17: 324–329.
32 32 Guthrie, F. (1864). II. On drops. Proc. R. Soc. London, Ser. B 13: 444–457.
33 33 Guthrie, F. (1864). On drops. Part II. Proc. R. Soc. London, Ser. B 13: 457–483.
34 34 Musculus, C. (1864). Ueber die Veränderungen der Molecularcohäsion des Wassers (about the changes of the molecular cohesion of water). Chem. Zentralbl. 922.
35 35 Yadav, J.B. (2010). Advanced Practical Physical Chemistry. India: Krishna Prakashan Media.
36 36 Dorsey, N.E. (1926). Measurement of the surface tension. Sci. Paper 21: 563–595.
37 37 Tate, T. (1864). On the magnitude of a drop of liquid formed under different circumstances. Philos. Mag. 27: 176–180.
38 38 Milner, S.R. (1907). IV. On surface concentration, and the formation of liquid films. London, Edinburgh Dublin Philos. Mag. J. Sci. 13: 96–110.
39 39 Langmuir, I. (1917). The shapes of group molecules forming the surfaces of liquids. Proc. Natl. Acad. Sci. USA 3: 251–257.
40 40 Malfitano, G. (1909). On the properties of colloidal particles called micellae. Compt. Rend. 148: 1045.
41 41 Wyrouboff, G. (1901). Some remarks over the colloids. Bull. Soc. Chim. Fr. 25: 1016–1022.
42 42 McBain, J.W. and Salmon, C.S. (1920). Colloidal electrolytes. Soap solutions and their constitution. J. Am. Chem. Soc. 42: 426–460.
43 43 Laing, M.E. and McBain, J.W. (1920). Investigations of sodium oleate solutions in the three physical states of curd, gel and sol. J. Chem. Soc. Trans. 117: 1508–1528.
44 44 McBain, J.W. and Jenkins, W.J. (1922). Ultrafiltration of soap solutions. Sodium oleate and potassium laurate. J. Chem. Soc., Trans. 121: 2325–2344.
45 45 Grindley, J. and Bury, C.R. (1929). The densities of butyric acid–water mixtures. J. Chem. Soc.: 679–684.
46 46 Davies, D.G. and Bury, C.R. (1930). The partial specific volume of potassium octoate in aqueous solution. J. Chem. Soc.: 2263–2267.
47 47 Powney, J. and Addison, C.C. (1937). The properties of detergent solutions. II. The surface and interfacial tensions of aqueous solutions of alkyl sodium sulfates. Trans. Faraday Soc. 33: 1243–1253.
48 48 Krafft, F. and Wiglow, H. (1895). Behaviour of the alkali salts of the fatty acids and of soaps in presence of water. Ber. Dtsch. Chem. Ges. 28: 2566–2573, 2573–2582.
49 49 Hutchinson, E., Inaba, A., and Baley, L.G. (1955). The properties of colloidal electrolyte solutions. Z. Phys. Chem. 5: 344–371.
50 50 Shinoda, K. and Hutchinson, E. (1962). Pseudo‐phase separation model for thermodynamic calculations on micellar solutions. J. Phys. Chem. 66: 577–582.
51 51 Nilsson, G. (1957). The adsorption of Tritiated sodium dodecyl sulfate at the solution surface measured with a windowless, high humidity gas flow proportional counter. J. Phys. Chem. 57: 1135–1142.
52 52 Allen, G.D. (1915). The determination of the bile salts in urine by means of the surface tension method. J. Biol. Chem. 22: 505–524.
53 53 Reis, S., Guimaraes Moutinho, C., Matos, C. et al. (2004). Noninvasive methods to determine the critical micelle concentration of some bile acid salts. Anal. Biochem. 334: 117–126.
54 54 Atkins, P.W. and de Paula, J. (2002). Physical Chemistry, 7e. Oxford: Oxford University.
55 55 Menger, F.M., Shi, L., and Rizvi, S.A.A. (2009). Re‐evaluating the Gibbs analysis of surface tension at the air/water Interface. J. Am. Chem. Soc. 131: 10380–10381.
56 56 Menger, F.M. and Rizvi, S.A.A. (2011). Relationship between surface tension and surface coverage. Langmuir 27: 13975–13977.
57 57 Li, P.X., Thomas, R.K., and Penfold, J. (2014). Limitations in the use of surface tension and the Gibbs equation to determine surface excesses of cationic surfactants. Langmuir 30: 6739–6747.
58 58 Xu, H., Li, P.X., Ma, K. et al. (2013). Limitations in the application of the Gibbs equation to anionic surfactants at the air/water surface: Sodium dodecylsulfate and sodium dodecylmonooxyethylenesulfate above and nelow the CMC. Langmuir 29: 9335–9351.
59 59 Tartar, H.V. and Wright, K.A. (1939). Sulfonates. III. Solubilities, micelle formation and hydrates of the sodium salts of the higher alkyl sulfonates. J. Am. Chem. Soc. 61: 539–544.
60 60 Wright, K.A. and Tartar, H.V. (1939). Studies of sulfonates. IV. Densities and viscosities of sodium dodecyl sulfonate solutions in relation to micelle formation. J. Am. Chem. Soc. 61: 544–549.
61 61 Wright, K.A., Abbott, A.D., Sivertz, V., and Tartar, H.V. (1939). Sulfonates. V. Electrical conductance of sodium decyl‐, dodecyl‐ and hexadecyl‐sulfonate solutions at 40°, 60° and 80°. Micelle formation. J. Am. Chem. Soc. 61: 549–551.
62 62 Hartley, G.S. (1936). Critical concentration for micelles in solutions of cetanesulfonic acid. J. Am. Chem. Soc. 58: 2347–2354.
63 63 Hartley, G.S. (1939). Ion aggregation in solutions of salts with long paraffin chains. Kolloidn. Zh. 88: 22–40.
64 64 Corrin, M.L. and Harkins, W.D. (1947b). The effect of salts on the critical concentration for the formation of micelles in colloidal electrolytes. J. Am. Chem. Soc. 67: 683–688.
65 65 Lange, H. (1950). Application of the law of mass action to micelle formation in colloidal electrolytes. Kolloidn. Zh. 117: 48–51.
66 66 Hall, D.G. (1981). Thermodynamics of solutions of polyelectrolytes, ionic surfactants, and other charged colloidal system. J. Chem. Soc. Faraday Trans. 1 (77): 1121–1156.
67 67 Corrin, M.L. and Harkins, W.D. (1946a). The effect of solvents on the critical concentration for micelle formation of cationic soaps. J. Chem. Phys. 14: 640–641.
68 68 Herzfeld, S.H., Corrin, M.L., and Harkins, W.D. (1950). The the effect of alcohols and of alcohols and salts on the critical micelle concentration of dodecylammonium chloride. J. Phys. Colloid Chem. 54: 271–283.
69 69 Reichenberg, D. (1947). Colloidal crystallites and micelles. I. The micelle in solution. Apparent anomalies in the surface‐ and interfacial‐tension‐concentration curves of aqueous solutions of paraffin‐chain salts. Trans. Faraday Soc. 43: 467–479.
70 70 Klevens, H.B. (1947a). Effects of temperature on the critical concentrations of anionic and cationic detergents. J. Phys. Chem. 51: 1143–1154.
71 71 Klevens, H.B. (1947b). Effect of temperature on micelle formation as determined by refraction. J. Colloid Sci. 2: 301–303.
72 72 Sheppard, S.E. and Geddes, A.L. (1945). Amphipathic character of proteins and certain lyophile colloids as indicated by absorption spectra of dyes. J. Chem. Phys. 13: 63.
73 73 Corrin, M.L., Klevens, H.B., and Harkins, W.D. (1946). Critical concentration for the formation of micelles as indicated by the absorption spectrum of a cyanine dye. J. Chem. Phys. 14: 216–217.
74 74 Klevens, H.B. (1946). The critical micelle concentration of anionic soap mixtures. J. Chem. Phys. 14: 742.
75 75 Corrin, M.L., Klevens, H.B., and Harkins, W.D. (1946.a). The determination of critical concentrations for the formation of soap micelles by the spectral behavior of pinacyanol chloride. J. Chem. Phys. 14: 480–486.
76 76 Kolthoff, I.M. and Johnson, W.F. (1946). Solubilization of p‐dimethylaminoazobenzene in soap solutions. J. Phys. Chem. 50: 440–442.
77 77 Corrin, M.L. and Harkins, W.D. (1946). Determination of critical concentrations for micelle formation in solutions of cationic soaps by changes in the color and fluorescence of dyes. J. Chem. Phys. 14: 641.
78 78 Corrin, M.L. and Harkins, W.D. (1947). Determination of the critical concentration for micelle formation in solutions of colloidal electrolytes by the spectral change of a dye. J. Am. Chem.