Quantum Mechanical Foundations of Molecular Spectroscopy. Max Diem

Читать онлайн.
Название Quantum Mechanical Foundations of Molecular Spectroscopy
Автор произведения Max Diem
Жанр Химия
Серия
Издательство Химия
Год выпуска 0
isbn 9783527829606



Скачать книгу

2.8a. Both the barriers and the slant of the bottom of the energy well can be achieved in the fabrication process by vaporizing different composition of semiconductor materials (doping).

Schematic illustration of (a) An individual energy well with finite barrier height and a sloping energy bottom with the two lowest energy states and wavefunctions. (b) The superlattice structure in a quantum cascade laser modeled by successive PiB potential energy levels.

      During the operation of the QCL, electrons are injected, via an electric current, at a potential energy marked by the * symbol in Figure 2.8b into a highly excited energy state and undergo a transition as indicated by the leftmost down arrow. During this transition, an (infrared) photon is emitted. Subsequently, the electron in the ground state may tunnel through the finite‐height barrier and arrives in the next quantum well and undergoes another transition. The emission and tunneling processes are repeated as many times as there are quantum wells in the superstructure. The term “cascade” in QCL is due to the fact that one electron can undergo many consecutive emission processes in the superlattice structure. By placing the superlattice crystal into an optic cavity, stimulated emission (see Chapter 3) from the excited states into the ground states of each well can be achieved.

      1 1 Levine, I. (1983). Quantum Chemistry. Boston: Allyn & Bacon.

      2 2 Shoemaker, D.P., Garland, C.W., and Nibler, J.W. (1996). Experiments in Physical Chemistry, 6e. New York: McGraw‐Hill.

      3  3 Banin, U. et al. (1999). Identification of atomic‐like electronic states in indium arsenide nanocrystal quantum dots. Nature 400 (6744): 542–544.

      4 4 Faist, J. et al. (1994). Quantum Cascade Laser. Science 264 (5158): 553–556.

      The following trigonometric integral relationships are needed for these problems:

integral sine squared italic a x normal d x equals StartFraction x Over 2 EndFraction minus StartFraction 1 Over 4 a EndFraction sine italic a x integral x sine squared left-parenthesis italic a x right-parenthesis normal d x equals StartFraction x squared Over 4 EndFraction minus StartFraction x sine left-parenthesis 2 italic a x right-parenthesis Over 4 a EndFraction minus StartFraction cosine left-parenthesis 2 italic a x right-parenthesis Over 8 a squared EndFraction StartLayout 1st Row 1st Column integral sine left-parenthesis italic a x right-parenthesis cosine left-parenthesis italic b x right-parenthesis normal d x 2nd Column equals StartFraction minus cosine left-parenthesis a minus b right-parenthesis x Over 2 left-parenthesis a minus b right-parenthesis EndFraction minus StartFraction cosine left-parenthesis a plus b right-parenthesis x Over 2 left-parenthesis a plus b right-parenthesis EndFraction integral sine left-parenthesis italic a x right-parenthesis sine left-parenthesis italic b x right-parenthesis normal d x 2nd Row 1st Column Blank 2nd Column equals StartFraction minus sine left-parenthesis a plus b right-parenthesis x Over 2 left-parenthesis a plus b right-parenthesis EndFraction plus StartFraction sine left-bracket left-parenthesis a minus b right-parenthesis x right-bracket Over 2 left-parenthesis a minus b right-parenthesis EndFraction EndLayout

      1 Show that the function f(x) = cos(bx) is an eigenfunction of the operator d2/dx2. What is the eigenvalue?

      2 Show that the function e−x2/2 is an eigenfunction of the operator (d2/dx2) − x2. What is the eigenvalue?

      3 Show that the function e−4ix is an eigenfunction of the operator d2/dx2. What is the eigenvalue?

      4 What is the probability P of finding a ground‐state PiB in the center third of the box? What is P for the same range for a classical particle?

      5 For the PiB in the ground state, determine the expectation values of x and px.

      6 What is the expectation value of the kinetic energy operator T for the ground‐state PiB?

      7 What is the probability P of finding a particle in the first excited state in the left half of the box with length L within the PiB approximation?

      8 Consider an electron in a one‐dimensional box with a length of 0.1 nm.Calculate the energy of the 1st, 2nd, and 3rd energy levels for this electron.Calculate the wavelength of a photon required to promote the electron from the 2nd to the 3rd energy level.

      9 Describe in your own words why the particle‐in‐a‐box model results in quantized energy levels.

      10 What is quantum mechanical tunneling?

      11 Calculate the commutator [Tx, px] where Tx is the kinetic energy operator in the x‐direction and px is the momentum operator in the x‐direction. Can the kinetic energy and the momentum be determined simultaneously in a quantum mechanical system?

      12 Show by analytical integration that ψ1(x) and ψ2(x) are orthogonal for the one‐dimensional PiB.

      13 Using a graphics program such as Excel, plot the first and second wavefunctions for a particle in a box. Show by graphical integration that these functions are orthogonal.

      Конец ознакомительного фрагмента.

      Текст предоставлен ООО «ЛитРес».

      Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.

      Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.

/9j/4AAQSkZJRgABAQEBLAEsAAD/4gI4SUNDX1BST0ZJTEUAAQEAAAIoQURCRQIQAABtbnRyUkdC IFhZWiAH0AAIAAsAEwA2ABJhY3NwQVBQTAAAAABub25lAAAAAAAAAAAAAAAAAAAAAAAA9tYAAQAA AADTLUFEQkUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAApj cHJ0AAAA/AAAADJkZXNjAAABMAAAAGR3dHB0AAABlAAAABRia3B0AAABqAAAABRyVFJDAAABvAAA AA5nVFJDAAABzAAAA