Quantum Mechanical Foundations of Molecular Spectroscopy. Max Diem

Читать онлайн.
Название Quantum Mechanical Foundations of Molecular Spectroscopy
Автор произведения Max Diem
Жанр Химия
Серия
Издательство Химия
Год выпуска 0
isbn 9783527829606



Скачать книгу

quantum mechanics and spectroscopy: by substituting the classical momentum with the momentum operator, quantized energy levels (or stationary states) were obtained. This quantization is a direct consequence of the boundary conditions, which required wavefunctions to be zero at the edge of the box. Since the energy depends on this quantum number n, one usually writes Eq. (2.32) as

      (2.33)upper E left-parenthesis n right-parenthesis equals StartFraction n squared h squared Over 8 m upper L squared EndFraction

      (2.27)normal psi left-parenthesis x right-parenthesis equals upper A sine left-parenthesis StartFraction 2 italic m upper E Over normal h with stroke squared EndFraction right-parenthesis Superscript one half Baseline x

      one obtains

      which are the wave functions for the PiB.

      (2.35)integral Subscript 0 Superscript upper L Baseline normal psi Subscript n Superscript 2 Baseline left-parenthesis x right-parenthesis normal d x equals 1 equals upper A squared integral Subscript 0 Superscript upper L Baseline sine squared left-parenthesis StartFraction n normal pi Over upper L EndFraction x right-parenthesis normal d x

      Using the integral relationship

      the amplitude A is obtained as follows:

upper A squared integral Subscript 0 Superscript upper L Baseline sine left-parenthesis StartFraction n normal pi x Over upper L EndFraction right-parenthesis squared normal d x equals upper A squared left-bracket StartFraction x Over 2 EndFraction minus StartFraction upper L Over 4 n normal pi EndFraction sine left-parenthesis StartFraction 2 n normal pi x Over upper L EndFraction right-parenthesis right-bracket Subscript x equals 0 Superscript x equals upper L Baseline equals 1 upper A squared left-bracket StartFraction upper L Over 2 EndFraction minus StartFraction upper L Over 4 n normal pi EndFraction sine left-parenthesis StartFraction 2 n normal pi upper L Over upper L EndFraction right-parenthesis minus 0 plus StartFraction upper L Over 4 n normal pi EndFraction sine 0 right-bracket equals upper A squared left-bracket StartFraction upper L Over 2 EndFraction right-bracket equals 1

      Thus, the normalized stationary‐state wavefunctions for the particle in a box can be written in a final form as

      (2.38)normal psi Subscript n Baseline left-parenthesis x right-parenthesis equals StartRoot StartFraction 2 Over upper L EndFraction EndRoot sine left-parenthesis StartFraction n normal pi Over upper L EndFraction right-parenthesis x

      The probability of finding the particle at any given position x is shown in Figure 2.2, panel (b). These traces are the squares of the wavefunctions and depict that for higher levels of n, the probability of finding the particle moves away from the center to the periphery of the box.

      The PiB wavefunctions form an orthonormal vector space, which implies that

Schematic illustration of the (a) Representation of the particle-in-a-box wavefunctions shown in Figure 2.2 as standing waves. (b) Visualization of the orthogonality of the first two PiB wavefunctions.