Название | A System of Logic, Ratiocinative and Inductive |
---|---|
Автор произведения | John Stuart Mill |
Жанр | Математика |
Серия | |
Издательство | Математика |
Год выпуска | 0 |
isbn | 4064066103569 |
Take, for instance, any of the definitions laid down as premises in Euclid's Elements; the definition, let us say, of a circle. This, being analyzed, consists of two propositions; the one an assumption with respect to a matter of fact, the other a genuine definition. “A figure may exist, having all the points in the line which bounds it equally distant from a single point within it:” “Any figure possessing this property is called a circle.” Let us look at one of the demonstrations which are said to depend on this definition, and observe to which of the two propositions contained in it the demonstration really appeals. “About the centre A, describe the circle B C D.”
[pg 114]
Here is an assumption that a figure, such as the definition expresses, may be described; which is no other than the postulate, or covert assumption, involved in the so-called definition. But whether that figure be called a circle or not is quite immaterial. The purpose would be as well answered, in all respects except brevity, were we to say, “Through the point B, draw a line returning into itself, of which every point shall be at an equal distance from the point A.” By this the definition of a circle would be got rid of, and rendered needless; but not the postulate implied in it; without that the demonstration could not stand. The circle being now described, let us proceed to the consequence. “Since B C D is a circle, the radius B A is equal to the radius C A.” B A is equal to C A, not because B C D is a circle, but because B C D is a figure with the radii equal. Our warrant for assuming that such a figure about the centre A, with the radius B A, may be made to exist, is the postulate. Whether the admissibility of these postulates rests on intuition, or on proof, may be a matter of dispute; but in either case they are the premises on which the theorems depend; and while these are retained it would make no difference in the certainty of geometrical truths, though every definition in Euclid, and every technical term therein defined, were laid aside.
It is, perhaps, superfluous to dwell at so much length on what is so nearly self-evident; but when a distinction, obvious as it may appear, has been confounded, and by powerful intellects, it is better to say too much than too little for the purpose of rendering such mistakes impossible in future. I will, therefore detain the reader while I point out one of the absurd consequences flowing from the supposition that definitions, as such, are the premises in any of our reasonings, except such as relate to words only. If this supposition were true, we might argue correctly from true premises, and arrive at a false conclusion. We should only have to assume as a premise the definition of a nonentity; or rather of a name which has no entity corresponding to it. Let this, for instance, be our definition:
A dragon is a serpent breathing flame.
This proposition, considered only as a definition, is indisputably correct. A dragon is a serpent breathing flame: the word means that. The tacit assumption, indeed (if there were any such understood assertion), of the existence of an object with properties corresponding to the definition, would, in the present instance, be false. Out of this definition we may carve the premises of the following syllogism:
A dragon is a thing which breathes flame:
A dragon is a serpent:
From which the conclusion is,
Therefore some serpent or serpents breathe flame:
an unexceptionable syllogism in the first mode of the third figure, in which both premises are true and yet the conclusion false; which every logician knows to be an absurdity. The conclusion being false and the syllogism correct, the premises can not be true. But the premises, considered as parts of a definition, are true. Therefore, the premises considered as parts of a definition can not be the real ones. The real premises must be—
A dragon is a really existing thing which breathes flame:
A dragon is a really existing serpent:
which implied premises being false, the falsity of the conclusion presents no absurdity.
If we would determine what conclusion follows from the same ostensible premises when the tacit assumption of real existence is left out, let us, according [pg 115] to the recommendation in a previous page, substitute means for is. We then have—
Dragon is a word meaning a thing which breathes flame:
Dragon is a word meaning a serpent:
From which the conclusion is,
Some word or words which mean a serpent, also mean a thing which breathes flame:
where the conclusion (as well as the premises) is true, and is the only kind of conclusion which can ever follow from a definition, namely, a proposition relating to the meaning of words.
There is still another shape into which we may transform this syllogism. We may suppose the middle term to be the designation neither of a thing nor of a name, but of an idea. We then have—
The idea of a dragon is an idea of a thing which breathes flame:
The idea of a dragon is an idea of a serpent:
Therefore, there is an idea of a serpent, which is an idea of a thing breathing flame.
Here the conclusion is true, and also the premises; but the premises are not definitions. They are propositions affirming that an idea existing in the mind, includes certain ideal elements. The truth of the conclusion follows from the existence of the psychological phenomenon called the idea of a dragon; and therefore still from the tacit assumption of a matter of fact.45
When, as in this last syllogism, the conclusion is a proposition respecting an idea, the assumption on which it depends may be merely that of the existence of an idea. But when the conclusion is a proposition concerning a Thing, the postulate involved in the definition which stands as the apparent premise, is the existence of a thing conformable to the definition, and not merely of an idea conformable to it. This assumption of real existence we always convey the impression that we intend to make, when we profess to define any name which is already known to be a name of really existing objects. On this account it is, that the assumption was not necessarily implied in the definition of a dragon, while there was no doubt of its being included in the definition of a circle.
[pg 116]
§ 6. One of the circumstances which have contributed to keep up the notion, that demonstrative truths follow from definitions rather than from the postulates implied in those definitions, is, that the postulates, even in those sciences which are considered to surpass all others in demonstrative certainty, are not always exactly true. It is not true that a circle exists, or can be described, which has all its radii exactly equal. Such accuracy is ideal only; it is not found in nature, still less can it be realized by art. People had a difficulty, therefore, in conceiving that the most certain of all conclusions could rest on premises which, instead of being certainly true, are certainly not true to the full extent asserted. This apparent paradox will be examined when we come to treat of Demonstration; where we shall be able to show that as much of the postulate is true, as is required to support as much as is true of the conclusion. Philosophers, however, to whom this view had not occurred, or whom it did not satisfy, have thought it indispensable that there should be found in definitions something more certain, or at least more accurately true, than the implied postulate of the real existence of a corresponding object. And this something they flattered themselves they had found, when they laid it down that a definition is a statement and analysis not of the mere meaning of a word, nor yet of the nature of a thing, but