Название | Popular Scientific Recreations in Natural Philosphy, Astronomy, Geology, Chemistry, etc., etc., etc |
---|---|
Автор произведения | Gaston Tissandier |
Жанр | Языкознание |
Серия | |
Издательство | Языкознание |
Год выпуска | 0 |
isbn | 4064066232948 |
If one bears in mind, which is much below the truth, that the pressure exercised on the point must be proportional to the section, and admitting that a pressure of 11 centigrams suffices to thrust in the sting of a wasp half a millimetre, it will require more than 9 grams of pressure to thrust in a needle to the same extent. In fact, this latter figure is much too small, for we have not taken into account the advantage resulting from the elongated shape of the rose thorn, which renders it more favourable for penetration than a needle through a drop of tallow.
It would be easy to extend observations of this kind to a number of other objects, and the remarks I have just made on natural and artificial points will apply incontestably to textures for example. There is no doubt that the thread of a spider’s web would far surpass the thread of the finest lace, and that art will always find itself completely distanced by nature.
We amused ourselves frequently by examining the infusoria which are so easily procured by taking from some stagnant water the mucilage adhering to the vegetation on the banks, or attached to the lower part of water lentils. In this way we easily captured infusoria, which, when placed under a strong magnifier, presented the most remarkable spectacle that one can imagine. They are animalcules, having the form of transparent tulips attached to a long stem. They form bunches which expand and lengthen; then, suddenly, they are seen to contract with such considerable rapidity that the eye can scarcely follow the movement, and all the stems and flower-bells are folded up into the form of a ball. Then, in another moment, the stems lengthen, and the tulip-bells open once more. One can easily encourage the production of infusoria by constructing a small microscopic aquarium, in which one arranges the centre in a manner favourable to the development of the lowest organisms. It suffices to put a few leaves (a piece of parsley answers the purpose perfectly)4 in a small vase containing water (fig. 10), over which a glass cover is placed, and it is then exposed to the rays of the sun. In two or three days’ time, a drop of this water seen under the microscope will exhibit infusoria. After a certain time, too, the different species will begin to show themselves. Microscopical observations can be made on a number of different objects. Expose to the air some flour moistened by water, and before long a mouldiness will form on it; it is the penicillium glaucum, and when examined under a magnifier of 200 to 300 diameters, cells are distinguishable, branching out from an organism remarkable for its simplicity. We often amused ourselves by examining, almost at hazard, everything that came within our reach, and sometimes we were led to make very instructive investigations. When the sky was clear, and the weather favourable to walking, we encouraged our young people to run about in the fields and chase butterflies. The capture of butterflies is accomplished, as every one knows, by means of a gauze net, with which we provided the children, and the operation of chasing afforded them some very salutary exercise. It sometimes happens that butterflies abound in such numbers, that it is comparatively easy to capture them. During the month of June 1879, a large part of Western Europe was thronged with swarms of Vanessa algina butterflies, in such numbers that their appearance was regarded as an important event, and attracted the lively attention of all entomologists (fig. 11). This passage of butterflies provided the occasion for many interesting studies on the part of naturalists.
Fig. 10.—Arrangement of a microscopic aquarium for examining infusoria.
Fig. 11.—Flight of butterflies seen near Berne, June 15th, 1879.
Fig. 12.—Group of rock crystal.
We cannot point out too strongly to our readers that the essential condition for the student of natural science, is the possession of that sacred fire which imparts the energy and perseverance necessary for acquiring and enlarging collections. It is also necessary that the investigator should furnish himself with certain indispensable tools. For collecting plants, the botanist should be armed with a pickaxe set in a thoroughly strong handle, a trowel, of which there is a variety of shapes, and a knife with a sharp blade. A botanical case must also be included, for carrying the plants. The geologist, or mineralogist, needs no more elaborate instruments; a hammer, a chisel, and a pickaxe with a sharp point for breaking the rocks, and a bag for carrying the specimens, will complete his outfit. We amused ourselves by having these instruments made by the blacksmith, sometimes even by manufacturing them ourselves; they were simple, but solid, and admirably adapted to the requirements of research. Often we directed our walks to the seashore, where we liked to collect shells on the sandy beach, or fossils among the cliffs and rocks. I recollect, in a walk I had taken some years previously along the foot of the cliffs of Cape Blanc-Nez, near Calais, having found an impression of an ammonite of remarkable size, which has often excited the admiration of amateurs; this ammonite measured no less than twelve inches in diameter. The rocks of Cape Grisnez, not far from Boulogne, also afford the geologian the opportunity of a number of curious investigations. In the Ardennes and the Alps I have frequently procured some fine mineral specimens; in the first locality crystallized pyrites, in the second, fine fragments of rock crystal (fig. 12). I did not fail to recount these successful expeditions to the young people who accompanied me, and their ardour was thereby inflamed by the hope that they also should find something valuable. It often happened when the sun was powerful, and the air extremely calm, that my young companions and I remarked some very beautiful effects of mirage on the beach, due to the heating of the lower strata of the atmosphere. The trees and houses appeared to be raised above a sheet of silver, in which their reflections were visible as in a sheet of tranquil water. It can hardly be believed how frequently the atmosphere affords interesting spectacles which pass unperceived before the eyes of those who know not how to observe. I recollect having once beheld at Jersey a magnificent phenomenon of this nature, on the 24th June, 1877, at eight o’clock in the evening: it was a column of light which rose above the sinking sun like a sheaf of fire. I was walking on the St. Helier pier, where there were also many promenaders, but there were not more than two or three who regarded with me this mighty spectacle. Columns and crosses of light are much more frequent than is commonly supposed, but they often pass unperceived before indifferent spectators. We will describe an example of this phenomenon observed at Havre on the 7th May, 1877. The sun formed the centre of the cross, which was of a yellow, golden colour. This cross had four branches. The upper branch was much more brilliant than the others; its height was about 15°. The lower branch was smaller, as seen in the sketch on page 2, taken from nature by Monsieur Albert Tissandier. The two horizontal branches were at times scarcely visible, and merged in a streak of reddish-yellow colour, which covered a large part of the horizon. A mass of cloud, which the setting sun tinged with a deep violet colour, formed the foreground of the picture. The atmosphere over the sea was very foggy. The phenomenon did not last more than a quarter of an hour, but the conclusion of the spectacle was signalized by an interesting circumstance. The two horizontal branches, and the lower branch of the luminous cross, completely disappeared, whilst the upper branch remained alone for some minutes longer. It had now the appearance of a vertical column rising from the sun, like that which Cassini studied on the 21st May, 1672, and that which M. Renon5 and M. A. Guillemin observed on the 12th July, 1876.6 Vertical columns, which, it is well known, are extremely rare phenomena, may therefore indicate the existence of a luminous cross, which certain atmospheric conditions have rendered but partially visible.
How often one sees along the roads little whirlwinds of dust raised by the wind accomplishing a rotatory movement, thus producing the imitation of a waterspout! How often halos encompass with a circle of fire the sun or the stars! How often we see the rainbow develop its iridescent beauties in the midst of a body of air traversed by bright raindrops! And there is not one of these great natural manifestations which may not give rise to instructive observations, and become the object of study and research. Thus, in walks and travels alike, the study of Science