Popular Scientific Recreations in Natural Philosphy, Astronomy, Geology, Chemistry, etc., etc., etc. Gaston Tissandier

Читать онлайн.
Название Popular Scientific Recreations in Natural Philosphy, Astronomy, Geology, Chemistry, etc., etc., etc
Автор произведения Gaston Tissandier
Жанр Языкознание
Серия
Издательство Языкознание
Год выпуска 0
isbn 4064066232948



Скачать книгу

transition, the entire movement. We give a few specimens of the pictures for the Zootrope (fig. 127). We have here an ape leaping over a hedge, a dancing “Punch,” a gendarme pursuing a thief, a person holding the devil by the tail, a robber coming out of a box, and a sportsman firing at a bird. The extremes of the movement are right and left; the intermediary figures make the transitions, and they are usually equal in number to the slits in the Zootrope. It is not difficult to construct such an instrument, and better drawings could be made than the specimens taken at random from a model. The earth might be represented turning in space, or a fire-engine pumping water could be given, and thus the Zootrope might be quite a vehicle of instruction as well as of amusement. This instrument is certainly one of the most curious in the range of optics, and never fails to excite interest. The ingenious contrivances which have up to the present time reproduced it, all consist in the employment of narrow slits, which besides reducing the light to a great extent, and consequently the light and clearness of the object, require the instrument to be set in rapid rotation, which greatly exaggerates the rapidity of the movements represented, and without which the intermissions of the spectacle could not unite in a continuous sensation.

      Fig. 126.—The Zootrope.

      Fig. 127.—Pictures used in the Zootrope.

      We present here an apparatus based on a very different optical arrangement. In the Praxinoscope12 (a name given by the inventor, Mr. Reynaud, to this new apparatus), the substitution of one object for another is accomplished without interruption in the vision, or solution of continuity, and consequently without a sensible reduction of light; in a word, the eye beholds continuously an image which, nevertheless, is incessantly changing before it. The result was obtained in this manner. Having sought unsuccessfully by mechanical means to substitute one object for another without interrupting the continuity of the spectacle, the inventor was seized with the idea of producing this substitution, not with the objects themselves, but with their virtual images. He then contrived the arrangement which we will now describe. A plane mirror, AB (fig. 129), is placed at a certain distance from an object, CD, and the virtual image will be seen at C′D′. If we then turn the plane mirror and object towards the point, O, letting BE and DF be their new positions, the image will be at C″D″. Its axis, O, will not be displaced. In the positions, AB and CD, first occupied by the plane mirror and the object, we now place another mirror and object. Let us imagine the eye placed at M. Half of the first object will be seen at OD″, and half of the second at OC′. If we continue the rotation of the instrument, we shall soon have mirror No. 2 at TT′, and object No. 2 at SS′. At the same moment the image of object No. 2 will be seen entirely at C‴D″. Mirror No. 2 and its object will soon after be at BE and DF. If we then imagine another mirror and its corresponding object at AB and CD, the same succession of phenomena will be reproduced. This experiment therefore shows that a series of objects placed on the perimeter of a polygon will be seen successively at the centre, if the plane mirrors are placed on a concentric polygon, the “apothème” of which will be less by one-half, and which will be carried on by the same movement. In its practical form, M. Reynaud’s apparatus consists of a polygonal or simply circular box (fig. 128), (for the polygon may be replaced by a circle without the principle or result being changed), in the centre of which is placed a prism of exactly half a diameter less, the surface of which is covered with plane mirrors. A strip of cardboard bearing a number of designs of the same object, portrayed in different phases of action, is placed in the interior of the circular rim of the box, so that each position corresponds to a plate of the glass prism. A moderate movement of rotation given to the apparatus, which is raised on a central pivot, suffices to produce the substitution of the figures, and the animated object is reflected on the centre of the glass prism with remarkable brightness, clearness, and delicacy of movement. Constructed in this manner, the Praxinoscope forms an optical toy both interesting and amusing. In the evening, a lamp placed on a support ad hoc, in the centre of the apparatus, suffices to light it up very clearly, and a number of persons may conveniently assemble round it, and witness the effects produced.

      Fig. 128.—M. Reynaud’s Praxinoscope.

      Fig. 129.

      Besides the attractions offered by the animated scenes of the Praxinoscope, the apparatus may also be made the object of useful applications in the study of optics. It permits an object, a drawing, or a colour, to be substituted instantaneously in experiments on secondary or subjective images, etc., on the contrast of colours or the persistence of impressions, etc. We can also make what is called a synthesis of movements by placing before the prism a series of diagrams of natural objects by means of photography.

      M. Reynaud has already arranged an apparatus which exhibits in the largest dimensions the animated reflection of the Praxinoscope, and which lends itself to the demonstration of curious effects before a numerous auditory. The ingenious inventor has recently contrived also a very curious improvement in the original apparatus. In the Praxinoscope Theatre he has succeeded in producing truly ornamental tableaux, as on a small Lilliputian stage, in the centre of which the principal object moves with startling effect. To obtain this result, M. Reynaud commences by cutting out in black paper the different figures, the whole of which will form an object animated by the rotation given to the Praxinoscope. To supply the decorations, he arranges on the black foundation the image of an appropriate coloured design by means of a piece of glass. It is well known that transparent glass possesses the property of giving a reflection of the objects on the nearest side as well as on the farthest. We may recall the applications of this optical effect in theatres, and also in courses of physics, under the title of impalpable spectres. It is also by reflection on thin, transparent glass, that M. Reynaud produces the image of the ornamentations in the Praxinoscope Theatre. The decorations are really placed in the lid, which is held by a hook in a vertical position, thus forming the front side of the apparatus (fig. 130). In this side a rectangular opening is made, through which the spectator (using both eyes) perceives at the same time the animated reflection of the Praxinoscope, and the immovable image of the decorations reflected in the transparent glass. The position of the latter and its distance from the coloured decorations are arranged so that the reflection is thrown behind the moving figure, which consequently appears in strong relief against the background, the effect produced being very striking. It is evident that to change the decorations it is only necessary to place in succession on a slide the different chromos representing landscapes, buildings, the interior of a circus, etc. It is easy to choose an arrangement suitable for each of the moving figures placed in the Praxinoscope. By this clever and entirely novel optical combination, the mechanism of the contrivance is entirely lost sight of, leaving only the effect produced by the animated figures, which fulfil their different movements on the little stage. The Praxinoscope Theatre can also be used as well in the evening as in the daytime. By daylight, it is sufficient to place it before a window, and in the evening the same effects may be produced, perhaps in even a more striking manner, by simply placing a lamp on the stand, with a small plated reflector, and a lamp-shade. The illusion produced by this scientific plaything is very complete and curious, and M. Reynaud cannot be too much commended for so cleverly applying his knowledge of physics in the construction of an apparatus which is at the same time both an optical instrument and a charming source of amusement.

      Fig 130.—The Praxinoscope Theatre.

      Fig. 131.—The Dazzling Top.

      Amongst the toys founded upon the persistency of impressions upon the retina we may instance the “Dazzling Top” (fig. 131). This remarkable invention is quite worthy of a place in every cabinet, and is an ingenious