Название | Popular Scientific Recreations in Natural Philosphy, Astronomy, Geology, Chemistry, etc., etc., etc |
---|---|
Автор произведения | Gaston Tissandier |
Жанр | Языкознание |
Серия | |
Издательство | Языкознание |
Год выпуска | 0 |
isbn | 4064066232948 |
Fig. 70.—Deception jugs of old pattern.
[This theorem is easily proved by filling a bucket with water, and moving it about in water, when it will be easy to lift; and likewise the human body may be easily sustained in water by a finger under the chin.]
Fig. 71.—Section of jug.
The manner in which Archimedes discovered the displacement of liquids is well known, but is always interesting. King Hiero, of Syracuse, ordered a crown of gold to be made, and when it had been completed and delivered to His Majesty, he had his doubts about the honesty of the goldsmith, and called to Archimedes to tell him whether or not the crown was of gold, pure and simple. Archimedes was puzzled, and went home deep in thought. Still considering the problem he went to the bath, and in his abstraction filled it to the brim. Stepping in he spilt a considerable quantity of water, and at once the idea struck him that any body put into water would displace its own weight of the liquid. He did not wait to dress, but ran half-naked to the palace, crying out, “Eureka, Eureka! I have found it, I have found it! “What had he found?—He had solved the problem.
He got a lump of gold the same weight as the crown, and immersed it in water. He found it weighed nineteen times as much as its own bulk of water. But when he weighed the kings crown he found it displaced more water than the pure gold had done, and consequently it had been adulterated by a lighter metal. He assumed that the alloy was silver, and by immersing lumps of silver and gold of equal weight with the crown, and weighing the water that overflowed from each dip, he was able to tell the king how far he had been cheated by the goldsmith.
Fig. 72.—Weighing metal in water.
It is by this method now that we can ascertain the specific gravity of bodies. One cubic inch of water weighs about half an ounce (or to be exact, 252½ grains). Take a piece of lead and weigh it in air; it weighs, say, eleven ounces. Then weigh it in a vase of water, and it will be only ten ounces in weight. So lead is eleven times heavier than water, or eleven ounces of lead occupy the same space as one ounce of water.
Fig. 73.—Hydrometer.
[The heavier a fluid is, or the greater its density, the greater will be the weight it will support. Therefore we can ascertain the purity or otherwise of certain liquids by using hydrometers, etc., which will float higher or lower in different liquids, and being gauged at the standard of purity, we can ascertain (for instance) how much water is in the milk when supplied from the dairy.]
But to return to Specific Gravity, which means the “Comparative density of any substance relatively to water,” or as Professor Huxley says, “The weight of a volume of any liquid or solid in proportion to the weight of the same volume of water, at a known temperature and pressure.”
Water, therefore, is taken as the unit; so anything whose equal volume under the same circumstances is twice as heavy as the water, is declared to have its specific gravity 2; if three-and-a-half times it is 3·5, and so on. We append a few examples; so we see that things which possess a higher specific gravity than water sink, which comes to the same thing as saying they are heavier than water, and vice versâ.
To find the specific gravity of any solid body proceed as above, in the experiment of the lead. By weighing the substance in and out of water we find the weight of the water displaced; that is, the first weight less the second. Divide the weight in air by the remainder, and we shall find the specific gravity of the substance.
Fig. 74.—Over-shot wheel of mill.
The following is a table of specific gravities of some very different substances, taking water as the unit.
Substance. | Specific Gravity. | Substance. | Specific Gravity. | Substance. | Specific Gravity. |
---|---|---|---|---|---|
Platinum | 21·5 | Iron | 7·79 | Water | 1·000 |
Gold | 19·5 | Tin | 7·29 | Sea Water | 1·026 |
Mercury | 13·59 | Granite | 2·62 | Rain Water | 1·001 |
Lead | 11·45 | Oak Wood | 0·77 | Ice | ·916 |
Silver | 10·50 | Cork | 0·24 | Ether | 0·723 |
Copper | 8·96 | Milk | 1·032 | Alcohol | 0·793 |
But we have by no means exhausted the uses of water. Hydrodynamics, which is the alternative term for hydraulics, includes the consideration of many forms of water-wheels, most of which, as mill-wheels, are under-shot, or over-shot accordingly as the water passes horizontally over the floats, or acts beneath them. These wheels are used in relation to the fall of water. If there is plenty of water and a slight fall, the under-shot wheel is used. If there is a good fall less water will suffice, as the weight and momentum of the falling liquid upon the paddles will turn the wheel. Here is the Persian water-wheel, used for irrigation (fig. 75). The Archimedian Screw, called after its inventor, was one of the earliest modes of raising water. It consists of a cylinder somewhat inclined, and a tube bent like a screw within it. By turning the handle of the screw the water is drawn up and flows out from the top.
Fig. 75.—Irrigation wheel in Egypt.
The Water Ram is a machine used for raising water to a great height by means of the momentum of falling water.
The Hydraulic Lift is familiar to us all, as it acts in our hotels, and we need only mention these appliances here; full descriptions will be found in Cyclopædias.
We have by no means exhausted the subject of Water in this chapter. Far from it. But when we come to Chemistry and Physical Geography we shall have more to tell, and our remarks as to the application of science to Domestic Economy, in accordance with our plan, will also lead us up to some of the uses of water. So for the present we will take our leave of water in a liquid form, and meet it again under the application of Heat, which subject will take us to Ice and Steam—two very different conditions of water.
CHAPTER VII.
HEAT—WHAT