Название | Sound |
---|---|
Автор произведения | John Tyndall |
Жанр | Языкознание |
Серия | |
Издательство | Языкознание |
Год выпуска | 0 |
isbn | 4064066215651 |
Curved roofs and ceilings and bellying sails act as mirrors upon sound. In our old laboratory, for example, the singing of a kettle seemed, in certain positions, to come, not from the fire on which it was placed, but from the ceiling. Inconvenient secrets have been thus revealed, an instance of which has been cited by Sir John Herschel.16 In one of the cathedrals in Sicily the confessional was so placed that the whispers of the penitents were reflected by the curved roof, and brought to a focus at a distant part of the edifice. The focus was discovered by accident, and for some time the person who discovered it took pleasure in hearing, and in bringing his friends to hear, utterances intended for the priest alone. One day, it is said, his own wife occupied the penitential stool, and both he and his friends were thus made acquainted with secrets which were the reverse of amusing to one of the party.
When a sufficient interval exists between a direct and a reflected sound, we hear the latter as an echo.
Sound, like light, may be reflected several times in succession, and, as the reflected light under these circumstances becomes gradually feebler to the eye, so the successive echoes become gradually feebler to the ear. In mountain regions this repetition and decay of sound produce wonderful and pleasing effects. Visitors to Killarney will remember the fine echo in the Gap of Dunloe. When a trumpet is sounded in the proper place in the Gap, the sonorous waves reach the ear in succession after one, two, three, or more reflections from the adjacent cliffs, and thus die away in the sweetest cadences. There is a deep cul-de-sac, called the Ochsenthal, formed by the great cliffs of the Engelhörner, near Rosenlaui, in Switzerland, where the echoes warble in a wonderful manner.
The sound of the Alpine horn, echoed from the rocks of the Wetterhorn or the Jungfrau, is in the first instance heard roughly. But by successive reflections the notes are rendered more soft and flute-like, the gradual diminution of intensity giving the impression that the source of sound is retreating further and further into the solitudes of ice and snow. The repetition of echoes is also in part due to the fact that the reflecting surfaces are at different distances from the hearer.
In large, unfurnished rooms the mixture of direct and reflected sound sometimes produces very curious effects. Standing, for example, in the gallery of the Bourse at Paris, you hear the confused vociferation of the excited multitude below. You see all the motions—of their lips as well as of their hands and arms. You know they are speaking—often, indeed, with vehemence—but what they say you know not. The voices mix with their echoes into a chaos of noise, out of which no intelligible utterance can emerge. The echoes of a room are materially damped by its furniture. The presence of an audience may also render intelligible speech possible where, without an audience, the definition of the direct voice is destroyed by its echoes. On the 16th of May, 1865, having to lecture in the Senate House of the University of Cambridge, I first made some experiments as to the loudness of voice necessary to fill the room, and was dismayed to find that a friend, placed at a distant part of the hall, could not follow me because of the echoes. The assembled audience, however, so quenched the sonorous waves that the echoes were practically absent, and my voice was plainly heard in all parts of the Senate House.
Sounds are also said to be reflected from the clouds. Arago reports that, when the sky is clear, the report of a cannon on an open plain is short and sharp, while a cloud is sufficient to produce an echo like the rolling of distant thunder. The subject of aërial echoes will be subsequently treated at length, when it will be shown that Arago’s conclusion requires correction.
Sir John Herschel, in his excellent article “Sound,” In the “Encyclopædia Metropolitana,” has collected with others the following instances of echoes. An echo in Woodstock Park repeats seventeen syllables by day and twenty by night; one, on the banks of the Lago del Lupo, above the fall of Terni, repeats fifteen. The tick of a watch may be heard from one end of the abbey church of St. Albans to the other. In Gloucester Cathedral, a gallery of an octagonal form conveys a whisper seventy-five feet across the nave. In the whispering-gallery of St. Paul’s, the faintest sound is conveyed from one side to the other of the dome, but is not heard at any intermediate point. At Carisbrook Castle, in the Isle of Wight, is a well two hundred and ten feet deep and twelve wide. The interior is lined by smooth masonry; when a pin is dropped into the well it is distinctly heard to strike the water. Shouting or coughing into this well produces a resonant ring of some duration.17
§ 6. Refraction of Sound
Fig. 10.
Another important analogy between sound and light has been established by M. Sondhauss.18 When a large lens is placed in front of our lamp, the lens compels the rays of light that fall upon it to deviate from their direct and divergent course, and to form a convergent cone behind it. This refraction of the luminous beam is a consequence of the retardation suffered by the light in passing through the glass. Sound may be similarly refracted by causing it to pass through a lens which retards its motion. Such a lens is formed when we fill a thin balloon with some gas heavier than air. A collodion balloon, B, Fig. 10, filled with carbonic-acid gas, the envelope being so thin as to yield readily to the pulses which strike against it, answers the purpose.19 A watch, w, is hung up close to the lens, beyond which, and at a distance of four or five feet from the lens, is placed the ear, assisted by the glass funnel f f′. By moving the head about, a position is soon discovered in which the ticking is particularly loud. This, in fact, is the focus of the lens. If the ear be moved from this focus the intensity of the sound falls; if, when the ear is at the focus, the balloon be removed, the ticks are enfeebled; on replacing the balloon their force is restored. The lens, in fact, enables us to hear the ticks distinctly when they are perfectly inaudible to the unaided ear.
How a sound-wave is thus converged may be comprehended by reference to Fig. 11. Let m o n o″ be a section of the sound-lens, and a b a portion of a sonorous wave approaching it from a distance. The middle point, o, of the wave first touches the lens, and is first retarded
§ 7. Diffraction of Sound: illustrations offered by great Explosions