A History of Aeronautics. Evelyn Charles Vivian

Читать онлайн.
Название A History of Aeronautics
Автор произведения Evelyn Charles Vivian
Жанр Документальная литература
Серия
Издательство Документальная литература
Год выпуска 0
isbn 4057664603326



Скачать книгу

upon the edge of the depression in which the quarry was situated. Thus hoisted, the albatross was swung to face a strong breeze that blew inland, and Le Bris manipulated his levers to give the front edges of his wings a downward angle, so that only the top surfaces should take the wing pressure. Having got his balance, he obtained a lifting angle of incidence on the wings by means of his levers, and released the hook that secured the machine, gliding off over the quarry. On the glide he met with the inevitable upward current of air that the quarry and the depression in which it was situated caused; this current upset the balance of the machine and flung it to the bottom of the quarry, breaking it to fragments. Le Bris, apparently as intrepid as ingenious, gripped the mast from which his levers were worked, and, springing upward as the machine touched earth, escaped with no more damage than a broken leg. But for the rebound of the levers he would have escaped even this.

      The interest of these experiments is enhanced by the fact that Le Bris was a seafaring man who conducted them from love of the science which had fired his imagination, and in so doing exhausted his own small means. It was in 1855 that he made these initial attempts, and twelve years passed before his persistence was rewarded by a public subscription made at Brest for the purpose of enabling him to continue his experiments. He built a second albatross, and on the advice of his friends ballasted it for flight instead of travelling in it himself. It was not so successful as the first, probably owing to the lack of human control while in flight; on one of the trials a height of 150 ft. was attained, the glider being secured by a thin rope and held so as to face into the wind. A glide of nearly an eighth of a mile was made with the rope hanging slack, and, at the end of this distance, a rise in the ground modified the force of the wind, whereupon the machine settled down without damage. A further trial in a gusty wind resulted in the complete destruction of this second machine; Le Bris had no more funds, no further subscriptions were likely to materialise, and so the experiments of this first exponent of the art of gliding (save for Besnier and his kind) came to an end. They constituted a notable achievement, and undoubtedly Le Bris deserves a better place than has been accorded him in the ranks of the early experimenters.

      Contemporary with him was Charles Spencer, the first man to practice gliding in England. His apparatus consisted of a pair of wings with a total area of 30 sq. ft., to which a tail and body were attached. The weight of this apparatus was some 24 lbs., and, launching himself on it from a small eminence, as was done later by Lilienthal in his experiments, the inventor made flights of over 120 feet. The glider in question was exhibited at the Aeronautical Exhibition of 1868.

       Table of Contents

      Until the Wright Brothers definitely solved the problem of flight and virtually gave the aeroplane its present place in aeronautics, there were three definite schools of experiment. The first of these was that which sought to imitate nature by means of the ornithopter or flapping-wing machines directly imitative of bird flight; the second school was that which believed in the helicopter or lifting screw; the third and eventually successful school is that which followed up the principle enunciated by Cayley, that of opposing a plane surface to the resistance of the air by supplying suitable motive power to drive it at the requisite angle for support.

      Engineering problems generally go to prove that too close an imitation of nature in her forms of recipro-cating motion is not advantageous; it is impossible to copy the minutiae of a bird's wing effectively, and the bird in flight depends on the tiniest details of its feathers just as much as on the general principle on which the whole wing is constructed. Bird flight, however, has attracted many experimenters, including even Lilienthal; among others may be mentioned F. W. Brearey, who invented what he called the 'Pectoral cord,' which stored energy on each upstroke of the artificial wing; E. P. Frost; Major R. Moore, and especially Hureau de Villeneuve, a most enthusiastic student of this form of flight, who began his experiments about 1865, and altogether designed and made nearly 300 artificial birds, one of his later constructions was a machine in bird form with a wing span of about 50 ft.; the motive power for this was supplied by steam from a boiler which, being stationary on the ground, was connected by a length of hose to the machine. De Villeneuve, turning on steam for his first trial, obtained sufficient power to make the wings beat very forcibly; with the inventor on the machine the latter rose several feet into the air, whereupon de Villeneuve grew nervous and turned off the steam supply. The machine fell to the earth, breaking one of its wings, and it does not appear that de Villeneuve troubled to reconstruct it. This experiment remains as the greatest success yet achieved by any machine constructed on the ornithopter principle.

      It may be that, as forecasted by the prophet Wells, the flapping-wing machine will yet come to its own and compete with the aeroplane in efficiency. Against this, however, are the practical advantages of the rotary mechanism of the aeroplane propeller as compared with the movement of a bird's wing, which, according to Marey, moves in a figure of eight. The force derived from a propeller is of necessity continual, while it is equally obvious that that derived from a flapping movement is intermittent, and, in the recovery of a wing after completion of one stroke for the next, there is necessarily a certain cessation, if not loss, of power.

      The matter of experiment along any lines in connection with aviation is primarily one of hard cash. Throughout the whole history of flight up to the outbreak of the European war development has been handicapped on the score of finance, and, since the arrival of the aeroplane, both ornithopter and helicopter schools have been handicapped by this consideration. Thus serious study of the efficiency of wings in imitation of those of the living bird has not been carried to a point that might win success for this method of propulsion. Even Wilbur Wright studied this subject and propounded certain theories, while a later and possibly more scientific student, F. W. Lanchester, has also contributed empirical conclusions. Another and earlier student was Lawrence Hargrave, who made a wing-propelled model which achieved successful flight, and in 1885 was exhibited before the Royal Society of New South Wales. Hargrave called the principle on which his propeller worked that of a 'Trochoided plane'; it was, in effect, similar to the feathering of an oar.

      Hargrave, to diverge for a brief while from the machine to the man, was one who, although he achieved nothing worthy of special remark, contributed a great deal of painstaking work to the science of flight. He made a series of experiments with man-lifting kites in addition to making a study of flapping-wing flight. It cannot be said that he set forth any new principle; his work was mainly imitative, but at the same time by developing ideas originated in great measure by others he helped toward the solution of the problem.

      Attempts at flight on the helicopter principle consist in the work of De la Landelle and others already mentioned. The possibility of flight by this method is modified by a very definite disadvantage of which lovers of the helicopter seem to take little account. It is always claimed for a machine of this type that it possesses great advantages both in rising and in landing, since, if it were effective, it would obviously be able to rise from and alight on any ground capable of containing its own bulk; a further advantage claimed is that the helicopter would be able to remain stationary in the air, maintaining itself in any position by the vertical lift of its propeller.

      These potential assets do not take into consideration the fact that efficiency is required not only in rising, landing, and remaining stationary in the air, but also in actual flight. It must be evident that if a certain amount of the motive force is used in maintaining the machine off the ground, that amount of force is missing from the total of horizontal driving power. Again, it is often assumed by advocates of this form of flight that the rapidity of climb of the helicopter would be far greater than that of the driven plane; this view overlooks the fact that the maintenance of aerodynamic support would claim the greater part of the engine-power; the rate of ascent would be governed by the amount of power that could be developed surplus to that required for maintenance.

      This is best explained by actual figures: assuming that a propeller 15 ft. in diameter is used, almost 50 horse-power would be required to get an upward lift of 1,000 pounds; this amount of horse-power would be continually absorbed in maintaining the machine in the air at any given level; for actual lift from