A History of Aeronautics. Evelyn Charles Vivian

Читать онлайн.
Название A History of Aeronautics
Автор произведения Evelyn Charles Vivian
Жанр Документальная литература
Серия
Издательство Документальная литература
Год выпуска 0
isbn 4064066182229



Скачать книгу

and safety should be tested, first with models, and then with full-sized machines; designers, he said, should make a point of practice in order to make sure of the action, to proportion and adjust the parts of their machine, and to eliminate hidden defects. Experimental flight, he suggested, should be tried over water, in order to break any accidental fall; when a series of experiments had proved the stability of a glider, it would then be time to apply motive power. He admitted that such a process would be both costly and slow, but, he said, that ‘it greatly diminished the chance of those accidents which bring a whole line of investigation into contempt.’ He saw the flying machine as what it has, in fact, been; a child of evolution, carried on step by step by one investigator after another, through the stages of doubt and perplexity which lie behind the realm of possibility, beyond which is the present day stage of actual performance and promise of ultimate success and triumph over the earlier, more cumbrous, and slower forms of the transport that we know.

      Chanute biplane glider.

      Chanute’s monograph, from which the foregoing notes have been comprised, was written soon after the conclusion of his series of experiments. He does not appear to have gone in for further practical work, but to have studied the subject from a theoretical view-point and with great attention to the work done by others. In a paper contributed in 1900 to the American Independent, he remarks that ‘Flying machines promise better results as to speed, but yet will be of limited commercial application. They may carry mails and reach other inaccessible places, but they cannot compete with railroads as carriers of passengers or freight. They will not fill the heavens with commerce, abolish custom houses, or revolutionise the world, for they will be expensive for the loads which they can carry, and subject to too many weather contingencies. Success is, however, probable. Each experimenter has added something to previous knowledge which his successors can avail of. It now seems likely that two forms of flying machines, a sporting type and an exploration type, will be gradually evolved within one or two generations, but the evolution will be costly and slow, and must be carried on by well-equipped and thoroughly informed scientific men; for the casual inventor, who relies upon one or two happy inspirations, will have no chance of success whatever.’

      Follows Professor John J. Montgomery, who, in the true American spirit, describes his own experiments so well that nobody can possibly do it better. His account of his work was given first of all in the American Journal, Aeronautics, in January, 1909, and thence transcribed in the English paper of the same name in May, 1910, and that account is here copied word for word. It may, however, be noted first that as far back as 1860, when Montgomery was only a boy, he was attracted to the study of aeronautical problems, and in 1883 he built his first machine, which was of the flapping-wing ornithopter type, and which showed its designer, with only one experiment, that he must design some other form of machine if he wished to attain to a successful flight. Chanute details how, in 1884 and 1885, Montgomery built three gliders, demonstrating the value of curved surfaces. With the first of these gliders Montgomery copied the wing of a seagull; with the second he proved that a flat surface was virtually useless, and with the third he pivoted his wings as in the Antoinette type of power-propelled aeroplane, proving to his own satisfaction that success lay in this direction. His own account of the gliding flights carried out under his direction is here set forth, being the best description of his work that can be obtained:—

      ‘When I commenced practical demonstration in my work with aeroplanes I had before me three points; first, equilibrium; second, complete control; and third, long continued or soaring flight. In starting I constructed and tested three sets of models, each in advance of the other in regard to the continuance of their soaring powers, but all equally perfect as to equilibrium and control. These models were tested by dropping them from a cable stretched between two mountain tops, with various loads, adjustments and positions. And it made no difference whether the models were dropped upside down or any other conceivable position, they always found their equilibrium immediately and glided safely to earth.

      ‘Then I constructed a large machine patterned after the first model, and with the assistance of three cowboy friends personally made a number of flights in the steep mountains near San Juan (a hundred miles distant). In making these flights I simply took the aeroplane and made a running jump. These tests were discontinued after I put my foot into a squirrel hole in landing and hurt my leg.

      The following year I commenced the work on a larger scale, by engaging aeronauts to ride my aeroplane dropped from balloons. During this work I used five hot-air balloons and one gas balloon, five or six aeroplanes, three riders—Maloney, Wilkie, and Defolco—and had sixteen applicants on my list, and had a training station to prepare any when I needed them.

      ‘Exhibitions were given in Santa Cruz, San Jose, Santa Clara, Oakland, and Sacramento. The flights that were made, instead of being haphazard affairs, were in the order of safety and development. In the first flight of an aeronaut the aeroplane was so arranged that the rider had little liberty of action, consequently he could make only a limited flight. In some of the first flights, the aeroplane did little more than settle in the air. But as the rider gained experience in each successive flight I changed the adjustments, giving him more liberty of action, so he could obtain longer flights and more varied movements in the flights. But in none of the flights did I have the adjustments so that the riders had full liberty, as I did not consider that they had the requisite knowledge and experience necessary for their safety; and hence, none of my aeroplanes were launched so arranged that the rider could make adjustments necessary for a full flight.

      ‘This line of action caused a good deal of trouble with aeronauts or riders, who had unbounded confidence and wanted to make long flights after the first few trials; but I found it necessary, as they seemed slow in comprehending the important elements and were willing to take risks. To give them the full knowledge in these matters I was formulating plans for a large starting station on the Mount Hamilton Range from which I could launch an aeroplane capable of carrying two, one of my aeronauts and myself, so I could teach him by demonstration. But the disasters consequent on the great earthquake completely stopped all my work on these lines. The flights that were given were only the first of the series with aeroplanes patterned after the first model. There were no aeroplanes constructed according to the two other models, as I had not given the full demonstration of the workings of the first, though some remarkable and startling work was done. On one occasion Maloney, in trying to make a very short turn in rapid flight, pressed very hard on the stirrup which gives a screw-shape to the wings, and made a side somersault. The course of the machine was very much like one turn of a corkscrew. After this movement the machine continued on its regular course. And afterwards Wilkie, not to be outdone by Maloney, told his friends he would do the same, and in a subsequent flight made two side somersaults, one in one direction and the other in an opposite, then made a deep dive and a long glide, and, when about three hundred feet in the air, brought the aeroplane to a sudden stop and settled to the earth. After these antics, I decreased the extent of the possible change in the form of wing-surface, so as to allow only straight sailing or only long curves in turning.

      ‘During my work I had a few carping critics that I silenced by this standing offer: If they would deposit a thousand dollars I would cover it on this proposition. I would fasten a 150 pound sack of sand in the rider’s seat, make the necessary adjustments, and send up an aeroplane upside down with a balloon, the aeroplane to be liberated by a time fuse. If the aeroplane did not immediately right itself, make a flight, and come safely to the ground, the money was theirs.

      ‘Now a word in regard to the fatal accident. The circumstances are these: The ascension was given to entertain a military company in which were many of Maloney’s friends, and he had told them he would give the most sensational flight they ever heard of. As the balloon was rising with the aeroplane, a guy rope dropping switched around the right wing and broke the tower that braced the two rear wings and which also gave control over the tail. We shouted Maloney that the machine was broken, but he probably did not hear us, as he was at the same time saying, “Hurrah for Montgomery’s airship,” and as the break was behind him, he may not have detected it. Now did he know of the breakage or not, and if he knew of it did he take a risk so as not to disappoint his friends? At all events, when the machine started on its flight the rear wings commenced