An essay on the foundations of geometry. Bertrand Russell

Читать онлайн.
Название An essay on the foundations of geometry
Автор произведения Bertrand Russell
Жанр Языкознание
Серия
Издательство Языкознание
Год выпуска 0
isbn 4057664648976



Скачать книгу

that such a view places our results, as to the à priori, at the mercy of empirical psychology. How serious this danger is, the controversy as to Kant's pure intuition sufficiently shows.

      5. I shall, therefore, throughout the present Essay, use the word à priori without any psychological implication. My test of apriority will be purely logical: Would experience be impossible, if a certain axiom or postulate were denied? Or, in a more restricted sense, which gives apriority only within a particular science: Would experience as to the subject-matter of that science be impossible, without a certain axiom or postulate? My results also, therefore, will be purely logical. If Psychology declares that some things, which I have declared à priori, are not subjective, then, failing an error of detail in my proofs, the connection of the à priori and the subjective, so far as those things are concerned, must be given up. There will be no discussion, accordingly, throughout this Essay, of the relation of the à priori to the subjective—a relation which cannot determine what pieces of knowledge are à priori, but rather depends on that determination, and belongs, in any case, rather to Metaphysics than to Epistemology.

      6. As I have ventured to use the word à priori in a slightly unconventional sense, I will give a few elucidatory remarks of a general nature.

      The à priori, since Kant at any rate, has generally stood for the necessary or apodeictic element in knowledge. But modern logic has shown that necessary propositions are always, in one aspect at least, hypothetical. There may be, and usually is, an implication that the connection, of which necessity is predicated, has some existence, but still, necessity always points beyond itself to a ground of necessity, and asserts this ground rather than the actual connection. As Bradley points out, "arsenic poisons" remains true, even if it is poisoning no one. If, therefore, the à priori in knowledge be primarily the necessary, it must be the necessary on some hypothesis, and the ground of necessity must be included as à priori. But the ground of necessity is, so far as the necessary connection in question can show, a mere fact, a merely categorical judgment. Hence necessity alone is an insufficient criterion of apriority.

      To supplement this criterion, we must supply the hypothesis or ground, on which alone the necessity holds, and this ground will vary from one science to another, and even, with the progress of knowledge, in the same science at different times. For as knowledge becomes more developed and articulate, more and more necessary connections are perceived, and the merely categorical truths, though they remain the foundation of apodeictic judgments, diminish in relative number. Nevertheless, in a fairly advanced science such as Geometry, we can, I think, pretty completely supply the appropriate ground, and establish, within the limits of the isolated science, the distinction between the necessary and the merely assertorical.

      8. These two grounds of necessity, in ultimate analysis, fall together. The methods of investigation in the two cases differ widely, but the results cannot differ. For in the first case, by analysis of the science, we discover the postulate on which alone its reasonings are possible. Now if reasoning in the science is impossible without some postulate, this postulate must be essential to experience of the subject-matter of the science, and thus we get the second ground. Nevertheless, the two methods are useful as supplementing one another, and the first, as starting from the actual science, is the safest and easiest method of investigation, though the second seems the more convincing for exposition.

      I shall hope to have touched, with this discussion, on all the main points relating to the Foundations of Geometry.

      FOOTNOTES:

       Table of Contents

      [1] Cf. Erdmann, Axiome der Geometrie, p. 111: "Für Kant sind Apriorität und ausschliessliche Subjectivität allerdings Wechselbegriffe."