Genome Engineering for Crop Improvement. Группа авторов

Читать онлайн.
Название Genome Engineering for Crop Improvement
Автор произведения Группа авторов
Жанр Биология
Серия
Издательство Биология
Год выпуска 0
isbn 9781119672401



Скачать книгу

D., Hajitou, A. et al. (2017). CRISPR/Cas9: transcending the reality of genome editing. Molecular Therapy – Nucleic Acids 7: 211–222.

      20 Cho, S.W., Kim, S., Kim, Y. et al. (2014). Analysis of off‐target effects of CRISPR/Cas‐derived RNA‐guided endonucleases and nickases. Genome Research 24: 132–141.

      21 Connorton, J.M., Jones, E.R., Rodríguez‐Ramiro, I. et al. (2017). Wheat vacuolar iron transporter TaVIT2 transports Fe and Mn and is effective for biofortification. Plant Physiology 174: 2434–2444.

      22 Crossa, J., Pérez‐Rodríguez, P., Cuevas, J. et al. (2017). Genomic selection in plant breeding: methods, models, and perspectives. Trends in Plant Science 22: 961–975.

      23 Cruz, D.N. and Khush, G.S. (2000). Rice grain quality evaluation procedures. In: Aromatic Rices (eds. R.K. Singh, U.S. Singh and G.S. Khush), 292. New Delhi: Mohan Primlani for Oxford & IBH Publishing Co. Pvt. Ltd.

      24 Deltcheva, E., Chylinski, K., Sharma, C.M. et al. (2011). CRISPR RNA maturation by trans‐encoded small RNA and host factor RNase III. Nature 471: 602.

      25 Deng, F., Tu, L., Tan, J. et al. (2012). GbPDF1 is involved in cotton fiber initiation via the core cis‐element HDZIP2ATATHB2. Plant Physiology 158: 890–904.

      26 Doench, J.G., Fusi, N., Sullender, M. et al. (2016). Optimized sgRNA design to maximize activity and minimize off‐target effects of CRISPR‐Cas9. Nature Biotechnology 34: 184.

      27 Du, H., Zeng, X., Zhao, M. et al. (2016). Efficient targeted mutagenesis in soybean by TALENs and CRISPR/Cas9. Journal of Biotechnology 217: 90–97.

      28 Fang, Y. and Tyler, B.M. (2016). Effcient disruption and replacement of an effector gene in the OomycetePhytophthorasojae using CRISPR/Cas9. Molecular Plant Pathology 17: 127–139.

      29 FAO (Food And Agriculture Organization of The United Nations) Statistics (2014‐15) (available at http://www.fao.org/faostat/en/#data/QC).

      30 FAO (Food And Agriculture Organization of The United Nations) (2019‐20).Commodity markets: Rice. http://www.fao.org/economic/est/est‐commodities/rice/en/ (accessed 17 July 2020.

      31 FAO (Food And Agriculture Organization of The United Nations) Statistics (2017‐18) (available at http://www.fao.org/faostat/en/#data/QC).

      32 Feng, C., Yuan, J., Wang, R. et al. (2016). Efficient targeted genome modification in maize using CRISPR/Cas9 system. Journal of Genetics and Genomics 43: 37–43.

      33 Ferguson, D.O. and Alt, F.W. (2001). DNA double strand break repair and chromosomal translocation: lessons from animal models. Oncogene 20: 5572.

      34 Ferrero, A. (2004). Constraints and opportunities for the sustainable development of rice‐based production systems in Europe.The International Conference on Sustainable Rice Systems, Rome.

      35  Fiaz, S., Ahmad, S., Noor, M.A. et al. (2019). Applications of the CRISPR/Cas9 system for Rice grain quality improvement: perspectives and opportunities. International Journal of Molecular Sciences 20: 888.

      36 Fiaz, S., Jiao, G., Sheng, Z. et al. (2019). Analysis of genomic regions governing cooking and eating quality traits using a recombinant inbred population in Rice (Oryza sativa L.). International Journal of Agriculture and Biology 22: 611–619.

      37 Gil‐Humanes, J., Pistón, F., Barro, F., and Rosell, C.M. (2014). The shutdown of celiac disease‐related gliadin epitopes in bread wheat by RNAi provides flours with increased stability and better tolerance to over‐mixing. PLoS One 9 (3): e91931.

      38 Godfray, H.C.J., Beddington, J.R., Crute, I.R. et al. (2010). Food security: the challenge of feeding 9 billion people. Science 327: 812–818.

      39 Guan, X., Song, Q., and Chen, Z.J. (2014). Polyploidy and small RNA regulation of cotton fiber development. Trends in Plant Science 19: 516–528.

      40 Hao, J., Tu, L., Hu, H. et al. (2012). GbTCP, a cotton TCP transcription factor, confers fibre elongation and root hair development by a complex regulating system. Journal of Experimental Botany 63: 6267–6281.

      41 Harmer, S., Orford, S., and Timmis, J. (2002). Characterisation of six a‐expansin genes in Gossypium hirsutum (upland cotton). Molecular Genetics and Genomics 268: 1–9.

      42 Hartung, F. and Schiemann, J. (2014). Precise plant breeding using new genome editing techniques: opportunities, safety and regulation in the EU. Plant Journal 78: 742–752.

      43 Heigwer, F., Kerr, G., and Boutros, M. (2014). E‐CRISP: fast CRISPR target site identification. Nature Methods 11: 122.

      44 Hsu, P.D., Scott, D.A., Weinstein, J.A. et al. (2013). DNA targeting specificity of RNA‐guided Cas9 nucleases. Nature Biotechnology 31: 827.

      45 Calyxt Inc (2019). First Commercial Sale of Calyxt High Oleic Soybean Oil. Minneapolis‐St. Paul: Calyxt Inc.

      46 Innes, R.W., Ameline‐Torregrosa, C., Ashfield, T. et al. (2008). Differential accumulation of retroelements and diversification of NB‐LRR disease resistance genes in duplicated regions following polyploidy in the ancestor of soybean. Plant Physiology 148: 1740–1759.

      47 Ishino, Y., Shinagawa, H., Makino, K. et al. (1987). Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. Journal of Bacteriology 169: 5429–5433.

      48 Jasin, M. (1996). Genetic manipulation of genomes with rare‐cutting donucleases. Trends in Genetics 12: 224–228.

      49 Jiang, Y., Guo, W., Zhu, H. et al. (2012). Overexpression of GhSusA1 increases plant biomass and improves cotton fiber yield and quality. Plant Biotechnology Journal 10: 301–312.

      50 Jinek, M., Chylinski, K., Fonfara, I. et al. (2012). A programmable dual‐RNA–guided DNA endonuclease in adaptive bacterial immunity. Science 337: 816–821.

      51 John, M.E. and Crow, L.J. (1992). Gene expression in cotton (Gossypium hirsutum L.) fiber: cloning of the mRNAs. Proceedings of the National Academy of Sciences 89: 5769–5773.

      52 Jones, J.D., Witek, K., Verweij, W. et al. (2014). Elevating crop disease resistance with cloned genes. Philosophical Transactions of the Royal Society: Biological Sciences 369: 20130087.

      53 Kang, G., Xu, W., Liu, G. et al. (2013). Comprehensive analysis of the transcription of starch synthesis genes and the transcription factor RSR1 in wheat (Triticum aestivum L.) endosperm. Genome 56: 115–122.

      54  Kim, H.J., Tang, Y., Moon, H.S. et al. (2013). Functional analyses of cotton (Gossypium hirsutum L.) immature fiber (im) mutant infer that fiber cell wall development is associated with stress responses. BMC Genomics 14: 889.

      55 Kim, M., Song, J.T., Bilyeu, K.D., and Lee, J.D. (2015). A new low linolenic acid allele of GmFAD3A gene in soybean PE1690. Molecular Breeding 35: 155.

      56 Komor, A.C., Kim, Y.B., Packer, M.S. et al. (2016). Programmable editing of a target base in genomic DNA without doubles tranded DNA cleavage. Nature 533: 420.

      57 Kulkarni, K.P., Patil, G., Valliyodan, B. et al. (2018). Comparative genome analysis to identify SNPs associated with high oleic acid and elevated protein content in soybean. Genome 61: 217–222.

      58 Lau, W.C., Rafii, M.Y., Ismail, M.R. et al. (2015). Review of functional markers for improving cooking, eating, and the nutritional qualities of rice. Frontiers in Plant Science 6: 832.

      59 Li, J., Xiao, J., Grandillo, S. et al. (2004). QTL detection for rice grain quality traits using an interspecific backcross population derived from cultivated Asian (Oryza sativa L.) and African (Oryzaglaberrima S.) rice. Genome 47: 697–704.

      60 Li, S., Li, J., Wang, N. et al. (2007). Inheritance and expression of copies of transgenes 1Dx5 and 1Ax1 in elite wheat (Triticumaestivum L.) varieties transferred from transgenic wheat through conventional crossing. ActaBiochimicaetBiophysicaSinica 39: 377–383.

      61 Li, D.D., Ruan, X.M., Zhang, J. et al. (2013). Cotton plasma membrane intrinsic protein 2s (PIP2s) selectively interact to regulate their water channel activities and are required for fiber development.