Название | Genome Engineering for Crop Improvement |
---|---|
Автор произведения | Группа авторов |
Жанр | Биология |
Серия | |
Издательство | Биология |
Год выпуска | 0 |
isbn | 9781119672401 |
117 Park, J., Bae, S., and Kim, J.S. (2015). Cas‐designer: a web‐based tool for choice of CRISPR‐Cas9 target sites. Bioinformatics 31 (24): 4014–4016.
118 Parry, M.A.J. and Hawkesford, M.J. (2012). An integrated approach to crop genetic improvement F. Journal of Integrative Plant Biology 54 (4): 250–259.
119 Peng, A., Chen, S., Lei, T. et al. (2017). Engineering canker‐resistant plants through CRISPR/Cas9‐targeted editing of the susceptibility gene Cs LOB 1 promoter in citrus. Plant Biotechnology Journal 15 (12): 1509–1519.
120 Prykhozhij, S.V., Vinothkumar Rajan, D.G., and Berman, J.N. (2015). CRISPR multitargeter: a web tool to find common and unique CRISPR single guide RNA targets in a set of similar sequences. PLoS One 10 (3): e0119372.
121 Qi, L.S., Larson, M.H., Gilbert, L.A. et al. (2013). Repurposing CRISPR as an RNA‐guided platform for sequence‐specific control of gene expression. Cell 152 (5): 1173–1183.
122 Ramirez, C.L., Foley, J.E., Wright, D.A. et al. (2008). Unexpected failure rates for modular assembly of engineered zinc fingers. Nature Methods 5 (5): 374–375.
123 Ran, F.A., Hsu, P.D., Lin, C.Y. et al. (2013). Double nicking by RNA‐guided CRISPR Cas9 for enhanced genome editing specificity. Cell 154: 1380–1389.
124 Reyon, D., Kirkpatrick, J.R., Sander, J.D. et al. (2011). ZFNGenome: a comprehensive resource for locating zinc finger nuclease target sites in model organisms. BMC Genomics 12 (1): 83.
125 Rodríguez‐Leal, D., Lemmon, Z.H., Man, J. et al. (2017). Engineering quantitative trait variation for crop improvement by genome editing. Cell 171 (2): 470–480.
126 Sander, J.D., Zaback, P., Joung, J.K. et al. (2007). Zinc finger Targeter (ZiFiT): an engineered zinc finger/target site design tool. Nucleic Acids Research 35 (suppl_2): W599–W605.
127 Sander, J.D., Dahlborg, E.J., Goodwin, M.J. et al. (2011a). Selection‐free zinc‐finger‐nuclease engineering by context‐dependent assembly (CoDA). Nature Methods 8: 67–69.
128 Sander, J.D., Cade, C., Khayter, C. et al. (2011b). Targeted gene disruption in somatic zebrafish cells using engineered TALENs. Nature Biotechnology 29: 697–698.
129 Sauer, N.J., Narváez‐Vásquez, J., Mozoruk, J. et al. (2016). Oligonucleotide‐mediated genome editing provides precision and function to engineered nucleases and antibiotics in plants. Plant Physiology 170 (4): 1917–1928.
130 Sedeek, K.E., Mahas, A., and Mahfouz, M. (2019). Plant genome engineering for targeted improvement of crop traits. Frontiers in Plant Science 10: 114.
131 Shan, Q., Wang, Y., Chen, K. et al. (2013a). Rapid and efficient gene modification in rice and Brachypodium using TALENs. Molecular Plant 6 (4): 1365–1368.
132 Shan, Q., Wang, Y., Li, J. et al. (2013b). Targeted genome modification of crop plants using the CRISPR‐Cas system. Nature Biotechnology 31: 686–688.
133 Shi, J., Gao, H., Wang, H. et al. (2017). ARGOS 8 variants generated by CRISPR‐Cas9 improve maize grain yield under field drought stress conditions. Plant Biotechnology Journal 15 (2): 207–216.
134 Shrestha, A., Khan, A., and Dey, N. (2018). Cis–trans engineering: advances and perspectives on customized transcriptional regulation in plants. Molecular Plant 11 (7): 886–898.
135 Shukla, V.K., Doyon, Y., Miller, J.C. et al. (2009). Precise genome modification in the crop species Zea mays using zinc‐finger nucleases. Nature 459: 437–441.
136 Singh, R., Kuscu, C., Quinlan, A. et al. (2015). Cas9‐chromatin binding information enables more accurate CRISPR off‐target prediction. Nucleic Acids Research 43 (18): e118–e118.
137 Soyk, S., Müller, N.A., Park, S.J. et al. (2016). Variation in the flowering gene SELF PRUNING 5G promotes day‐neutrality and early yield in tomato. Nature Genetics 49: 162–168.
138 Stemmer, M., Thumberger, T., del Sol Keyer, M. et al. (2015). CCTop: an intuitive, flexible and reliable CRISPR/Cas9 target prediction tool. PLoS One 10 (4): e0124633.
139 Sternberg, S.H., Redding, S., Jinek, M. et al. (2014). DNA interrogation by the CRISPR RNA‐guided endonuclease Cas9. Nature 507: 62–67.
140 Sun, Y., Zhang, X., Wu, C. et al. (2016). Engineering herbicide‐resistant rice plants through CRISPR/Cas9‐mediated homologous recombination of acetolactate synthase. Molecular Plant 9 (4): 628–631.
141 Sun, Y., Jiao, G., Liu, Z. et al. (2017). Generation of high‐amylose rice through CRISPR/Cas9‐mediated targeted mutagenesis of starch branching enzymes. Frontiers in Plant Science 8: 298.
142 Svitashev, S., Young, J.K., Schwartz, C. et al. (2015). Targeted mutagenesis, precise gene editing, and site‐specific gene insertion in maize using Cas9 and guide RNA. Plant Physiology 169 (2): 931–945.
143 Tang, W. and Tang, A.Y. (2017). Applications and roles of the CRISPR system in genome editing of plants. Journal of Forestry Research 28 (1): 15–28.
144 Tang, X., Ren, Q., Yang, L. et al. (2019). Single transcript unit CRISPR 2.0 systems for robust Cas9 and Cas12a mediated plant genome editing. Plant Biotechnology Journal 17 (7): 1431–1445.
145 Tian, S., Jiang, L., Cui, X. et al. (2018). Engineering herbicide‐resistant watermelon variety through CRISPR/Cas9‐mediated base‐editing. Plant Cell Reports 37 (9): 1353–1356.
146 Townsend, J.A., Wright, D.A., Winfrey, R.J. et al. (2009). High‐frequency modification of plant genes using engineered zinc‐finger nucleases. Nature 459 (7245): 442–445.
147 Tripathi, J.N., Ntui, V.O., Ron, M. et al. (2019). CRISPR/Cas9 editing of endogenous banana streak virus in the B genome of Musa spp. overcomes a major challenge in banana breeding. Communications Biology 2 (1): 1–11.
148 Tsai, S.Q., Wyvekens, N., Khayter, C. et al. (2014). Dimeric CRISPR RNA‐guided FokI nucleases for highly specific genome editing. Nature Biotechnology 32: 569–576.
149 Uniyal, A.P., Yadav, S.K., and Kumar, V. (2019). The CRISPR–Cas9, genome editing approach: a promising tool for drafting defense strategy against begomoviruses including cotton leaf curl viruses. Journal of Plant Biochemistry and Biotechnology 28: 121–132.
150 Upadhyay, S.K. and Sharma, S. (2014). SSFinder: high throughput CRISPR‐Cas target sites prediction tool. BioMed Research International 2014: 742482.
151 Upadhyay, S.K., Kumar, J., Alok, A., and Tuli, R. (2013). RNA‐guided genome editing for target gene mutations in wheat. G3: Genes, Genomes, Genetics 3 (12): 2233–2238.
152 Voytas, D.F. (2013). Plant genome engineering with sequence‐specific nucleases. Annual Review of Plant Biology 64: 327–350.
153 Wang, Z., Li, J., Huang, H. et al. (2012). An integrated chip for the high‐throughput synthesis of transcription activator‐like effectors. Angewandte Chemie International Edition 51 (34): 8505–8508.
154 Wang, Y., Cheng, X., Shan, Q. et al. (2014). Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nature Biotechnology 32: 947–951.
155 Wang, F., Wang, C., Liu, P. et al. (2016). Enhanced rice blast resistance by CRISPR/Cas9‐targeted mutagenesis of the ERF transcription factor gene OsERF922. PLoS One 11 (4): e0154027.
156 Wang, M., Mao, Y., Lu, Y. et al. (2017). Multiplex gene editing in rice using the CRISPR‐Cpf1 system. Molecular Plant 10 (7): 1011–1013.
157 Wendt, T., Holm, P.B., Starker, C.G. et al. (2013). TAL effector nucleases induce mutations at a pre‐selected location in the genome of primary barley transformants. Plant Molecular Biology 83 (3): 279–285.
158 Wilson, F.M., Harrison, K., Armitage, A.D. et al. (2019). CRISPR/Cas9‐mediated mutagenesis of phytoene desaturase in diploid and octoploid strawberry. Plant Methods 15 (1): 45.
159 Wright, D.A., Townsend, J.A., Winfrey, R.J. Jr. et al. (2005).