Engineering Acoustics. Malcolm J. Crocker

Читать онлайн.
Название Engineering Acoustics
Автор произведения Malcolm J. Crocker
Жанр Техническая литература
Серия
Издательство Техническая литература
Год выпуска 0
isbn 9781118693827



Скачать книгу

and the back can be considered as two sources that are 180° out of phase with each other. This system can be modeled [13, 14] as two out‐of‐phase monopoles of source strength Q separated by a distance l. Provided l ≪ λ, the sound pressure produced by such a dipole system is

      The sound pressure of a dipole source has near‐field and far‐field regions that exhibit similar behaviors to the particle velocity near‐field and far‐field regions of a monopole.

      An oscillating force applied at a point in space gives rise to results identical to Eq. (3.36), and hence there are many real sources of sound that behave like the idealized dipole source described above, for example, pure‐tone fan noise, vibrating beams, unbaffled loudspeakers, and even wires and branches (which sing in the wind due to alternate side vortex shedding).

      The next higher order source is the quadrupole. It is thought that the sound produced by the mixing process in an air jet gives rise to stresses that are quadrupole in nature. Quadrupoles may be considered to consist of two opposing point forces (two opposing dipoles) or equivalently four monopoles (see Table 3.1). We note that some authors use slightly different but equivalent definitions for the source strength of monopoles, dipoles, and quadrupoles. The definitions used in Sections 3.6 and 3.7 of this chapter are the same as in Crocker and Price [4] and Fahy [13] and result in expressions for sound pressure, sound intensity, and sound power which, although equivalent, are different in form from those in Ref. [20], for example.

      The expression for the sound pressure for a quadrupole is even more complicated than for a dipole. Close to the source, in the near field, the sound pressure p ∝ 1/r3. Farther from the sound source, p ∝ 1/r2; while in the far field, p ∝ 1/r.

      Sound sources experienced in practice are normally even more complicated than dipoles or quadrupoles. The sound radiation from a vibrating piston is described in Refs. [6, 16, 17, 21]. Chapters 9 and 11 in the Handbook of Acoustics [1] also describe radiation from dipoles and quadrupoles and the sound radiation from vibrating cylinders in chapter 9 of the same book [1].

      The discussion in Ref. [21] considers steady‐state radiation. However, there are many sources in nature and created by people that are transient. As shown in chapter 9 of the Handbook of Acoustics, [1] the harmonic analysis of these cases is often not suitable, and time‐domain methods have given better results and understanding of the phenomena. These are the approaches adopted in chapter 9 of the Handbook of Acoustics [1].

      3.6.1 Sound Intensity

      The radial particle velocity in a nondirectional spherically spreading sound field is given by Euler's equation as

      Close to such sources Eq. (3.15) must be used for the instantaneous radial intensity, and

      (3.39)equation

      for the time‐averaged radial intensity.

      The time‐averaged radial sound intensity in the far field of a dipole is given by [4]

      3.7.1 Sound Power of Idealized Sound Sources