Название | Nanobiotechnology in Diagnosis, Drug Delivery and Treatment |
---|---|
Автор произведения | Группа авторов |
Жанр | Химия |
Серия | |
Издательство | Химия |
Год выпуска | 0 |
isbn | 9781119671862 |
References
1 Abd‐Rabou, A.A., Shalby, A.B., and Ahmed, H.H. (2019). Selenium nanoparticles induce the chemo‐sensitivity of fluorouracil nanoparticles in breast and colon cancer cells. Biological Trace Element Research 187 (1): 80–91.
2 Ahmed, H.H., Abd El‐Maksoud, M.D., Abdel Moneim, A.E., and Aglan, H.A. (2017). Pre‐clinical study for the antidiabetic potential of selenium nanoparticles. Biological Trace Element Research 177 (2): 267–280.
3 Al‐Quraishy, S., Dkhil, M.A., and Abdel Moneim, A.E. (2015). Anti‐hyperglycemic activity of selenium nanoparticles in streptozotocin‐induced diabetic rats. International Journal of Nanomedicine 10: 6741–6756.
4 Atteia, H.H., Arafa, M.H., and Prabahar, K. (2018). Selenium nanoparticles prevents lead acetate‐induced hypothyroidism and oxidative damage of thyroid tissues in male rats through modulation of selenoenzymes and suppression of miR‐224. Biomedicine & Pharmacotherapy 99: 486–491.
5 Bao, P., Chen, Z., Tai, R.Z. et al. (2015). Selenite‐induced toxicity in cancer cells is mediated by metabolic generation of endogenous selenium nanoparticles. Journal of Proteome Research 14 (2): 1127–1136.
6 Bhattacharjee, A., Basu, A., Biswas, J. et al. (2017). Chemoprotective and chemosensitizing properties of selenium nanoparticle (Nano‐Se) during adjuvant therapy with cyclophosphamide in tumor‐bearing mice. Molecular and Cellular Biochemistry 424 (1–2): 13–33.
7 Bidkar, A.P., Sanpui, P., and Ghosh, S.S. (2017). Efficient induction of apoptosis in cancer cells by paclitaxel‐loaded selenium nanoparticles. Nanomedicine 12 (21): 2641–2651.
8 Chen, T., Wong, Y.S., Zheng, W. et al. (2008). Selenium nanoparticles fabricated in Undaria pinnatifida polysaccharide solutions induce mitochondria‐mediated apoptosis in A375 human melanoma cells. Colloids and Surfaces B: Biointerfaces 67 (1): 26–31.
9 Chen, F., Zhang, X.H., Hu, X.D. et al. (2018). The effects of combined selenium nanoparticles and radiation therapy on breast cancer cells in vitro. Artificial Cells, Nanomedicine, and Biotechnology 46 (5): 937–948.
10 Cho, H.S., Dong, Z., Pauletti, G.M. et al. (2010). Fluorescent, superparamagnetic nanospheres for drug storage, targeting, and imaging: a multifunctional nanocarrier system for cancer diagnosis and treatment. ACS Nano 4 (9): 5398–5404.
11 Cremonini, E., Zonaro, E., Donini, M. et al. (2016). Biogenic selenium nanoparticles: characterization, antimicrobial activity and effects on human dendritic cells and fibroblasts. Microbial Biotechnology 9 (6): 758–771.
12 Cremonini, E., Boaretti, M., Vandecandelaere, I. et al. (2018). Biogenic selenium nanoparticles synthesized by Stenotrophomonas maltophilia SeITE02 loose antibacterial and antibiofilm efficacy as a result of the progressive alteration of their organic coating layer. Microbial Biotechnology 11 (6): 1037–1047.
13 Cruz, L.Y., Wang, D., and Liu, J. (2019). Biosynthesis of selenium nanoparticles, characterization and X‐ray induced radiotherapy for the treatment of lung cancer with interstitial lung disease. Journal of Photochemistry and Photobiology B: Biology 191: 123–127.
14 Cui, D., Yan, C., Miao, J. et al. (2018). Synthesis, characterization and antitumor properties of selenium nanoparticles coupling with ferulic acid. Materials Science and Engineering: C 90: 104–112.
15 Deng, W., Xie, Q., Wang, H. et al. (2017). Selenium nanoparticles as versatile carriers for oral delivery of insulin: insight into the synergic antidiabetic effect and mechanism. Nanomedicine 13 (6): 1965–1974.
16 Deng, W., Wang, H., Wu, B., and Zhang, X. (2019). Selenium‐layered nanoparticles serving for oral delivery of phytomedicines with hypoglycemic activity to synergistically potentiate the antidiabetic effect. Acta Pharmaceutica Sinica B 9 (1): 74–86.
17 Dumitrescu, A.M. and Refetoff, S. (2011). Inherited defects of thyroid hormone metabolism. Annales d'Endocrinologie 72 (2): 95–98.
18 El‐Ghazaly, M.A., Fadel, N., Rashed, E. et al. (2017). Anti‐inflammatory effect of selenium nanoparticles on the inflammation induced in irradiated rats. Canadian Journal of Physiology and Pharmacology 95 (2): 101–110.
19 Fadeeva, T.V., Shurygina, I.A., Sukhov, B.G. et al. (2015). Relationship between the structures and antimicrobial activities of argentic nanocomposites. Bulletin of the Russian Academy of Sciences: Physics 79: 273–275.
20 Faghfuri, E., Yazdi, M.H., Mahdavi, M. et al. (2015). Dose‐response relationship study of selenium nanoparticles as an immunostimulatory agent in cancer‐bearing mice. Archives of Medical Research 46 (1): 31–37.
21 Gammelgaard, B., Jackson, M.I., and Gabel‐Jensen, C. (2011). Surveying selenium speciation from soil to cell‐forms and transformations. Analytical and Bioanalytical Chemistry 399 (5): 1743–1763.
22 Gao, F., Yuan, Q., Gao, L. et al. (2014). Cytotoxicity and therapeutic effect of irinotecan combined with selenium nanoparticles. Biomaterials 35 (31): 8854–8866.
23 Guan, B., Yan, R., Li, R., and Zhang, X. (2018). Selenium as a pleiotropic agent for medical discovery and drug delivery. International Journal of Nanomedicine 13: 7473–7490.
24 Guisbiers, G., Wang, Q., Khachatryan, E. et al. (2016). Inhibition of E. coli and S. aureus with selenium nanoparticles synthesized by pulsed laser ablation in deionized water. International Journal of Nanomedicine 11: 3731–3736.
25 Guisbiers, G., Lara, H.H., Mendoza‐Cruz, R. et al. (2017). Inhibition of Candida albicans biofilm by pure selenium nanoparticles synthesized by pulsed laser ablation in liquids. Nanomedicine 13 (3): 1095–1103.
26 Hauksdóttir, H.L. and Webster, T.J. (2018). Selenium and iron oxide nanocomposites for magnetically‐targeted anti‐cancer applications. Journal of Biomedical Nanotechnology 14 (3): 510–525.
27 Hoeg, A., Gogakos, A., Murphy, E. et al. (2012). Bone turnover and bone mineral density are independently related to selenium status in healthy euthyroid postmenopausal women. The Journal of Clinical Endocrinology & Metabolism 97 (11): 4061–4070.
28 Hou, J., Yu, X., Shen, Y. et al. (2017). Triphenyl phosphine‐functionalized chitosan nanoparticles enhanced antitumor efficiency through targeted delivery of doxorubicin to mitochondria. Nanoscale Research Letters 12 (1): 158.
29 Huang, Z., Rose, A.H., and Hoffmann, P.R. (2012). The role of selenium in inflammation and immunity: from molecular mechanisms to therapeutic opportunities. Antioxidants & Redox Signaling 16 (7): 705–743.
30 Huang, G., Liu, Z., He, L. et al. (2018). Autophagy is an important action mode for functionalized selenium nanoparticles to exhibit anti‐colorectal cancer activity. Biomaterials Science 6 (9): 2508–2517.
31 Huang, J., Huang, W., Zhang, Z. et al. (2019). Highly uniform synthesis of selenium nanoparticles with EGFR targeting and tumor microenvironment‐responsive ability for simultaneous diagnosis and therapy of nasopharyngeal carcinoma. ACS Applied Materials & Interfaces 11 (12): 11177–11193.
32 Huo, X., Zhang, Y., Jin, X. et al. (2019). A novel synthesis of selenium nanoparticles encapsulated PLGA nanospheres with curcumin molecules for the inhibition of amyloid β aggregation in Alzheimer's disease. Journal of Photochemistry and Photobiology B: Biology 190: 98–102.
33 Jalalian, S.H., Ramezani, M., Abnous, K., and Taghdisi, S.M. (2018). Targeted co‐delivery of epirubicin and NAS‐24 aptamer to cancer cells using selenium nanoparticles for enhancing tumor response in vitro and in vivo. Cancer Letters 416: 87–93.
34 Jia, X., Liu, Q., Zou, S. et al. (2015). Construction of selenium nanoparticles/β‐glucan composites