Oil-in-Water Nanosized Emulsions for Drug Delivery and Targeting. Tamilvanan Shunmugaperumal

Читать онлайн.
Название Oil-in-Water Nanosized Emulsions for Drug Delivery and Targeting
Автор произведения Tamilvanan Shunmugaperumal
Жанр Химия
Серия
Издательство Химия
Год выпуска 0
isbn 9781119585251



Скачать книгу

B.P. and Catherine, P. (2005), Nanoparticle silica‐stabilised oil‐in‐water emulsions: improving emulsion stability, Colloids Surf. A Physicochem. Eng. Aspects, 253, 105–115. doi:10.1016/j.colsurfa.2004.10.116

      8 Binks, B.P., Desforges, A., and Duff, D.G. (2007b), Synergistic stabilization of emulsions by a mixture of surface‐active nanoparticles and surfactant, Langmuir, 23, 1098–1106. doi:10.1021/la062510y

      9 Binks, B.P. and Lumsdon, S.O. (2000), Influence of particle wettability on the type and stability of surfactant‐free emulsions, Langmuir, 16, 8622–8631. doi:10.1021/la000189s

      10 Binks, B.P., Rodrigues, J.A., and Frith, W.J. (2007a), Synergistic interaction in emulsions stabilized by a mixture of silica nanoparticles and cationic surfactant, Langmuir, 23, 3626–3636. doi:10.1021/la0634600

      11 Buttle, S., Schmidt, R.H., and Müller, R.H. (2002), Production of amphotericin B emulsions based on SolEmuls technology, in: Fourth World Meeting on Pharmaceutics, Biopharmaceutics and Pharmaceutical Technology, Florence, pp. 1535–1536.

      12 Capek, I. (2004), Degradation of kinetically‐stable o/w emulsions, Adv. Colloid Interf. Sci., 107, 125–155. doi:10.1016/S0001‐8686(03)00115‐5

      13 Cegnar, M., Kos, J., and Kristl, J. (2004), Cystatin incorporated in poly(lactide‐co‐glycolide) nanoparticles: development and fundamental studies on preservation of its activity, Eur. J. Pharm. Sci., 22, 357–364. doi:10.1016/j.ejps.2004.04.003

      14 Cohen, T., Sauvageon‐Martre, H., Brossard, D. et al. (1996), Amphotericin B eye drops as a lipidic emulsion, Int. J. Pharm., 137, 249–254. doi:10.1016/0378‐5173(96)04473‐0

      15 Constantinides, P.P., Han, J., and Davis, S.S. (2006), Advances in the use of tocols as drug delivery vehicles, Pharm. Res., 23, 243–255. doi:10.1007/s11095‐005‐9262‐9

      16 Constantinides, P.P., Tustian, A., and Kessler, D.R. (2004), Tocol emulsions for drug solubilization and parenteral delivery, Adv. Drug Deliv. Rev., 56, 1243–1255. doi:10.1016/j.addr.2003.12.005

      17  Cotlier, E., Baskin, M., and Kresca, L. (1975), Effects of lysophosphatidyl choline and phospholipase A on the lens, Invest. Ophthalmol. Vis. Sci., 14, 697–701.

      18 Cui, F., Wang, Y., Wang, J. et al. (2007), Preparation of redispersible dry emulsion using Eudragit E100 as both solid carrier and unique emulsifier, Colloids Surf. A Physicochem. Eng. Aspects, 307, 137–141. doi:10.1016/j.colsurfa.2007.05.013.

      19 Calvo, P., Remuñá‐López, C., Vila‐Jato, J.L. et al. (1997), Development of positively charged colloidal drug carriers: chitosan‐coated polyester nanocapsules and submicro‐emulsions, Colloid Polym. Sci., 275, 46–53. doi:10.1007/s003960050050

      20 Davis, S.S. and Washington, C. (1988), Drug emulsion, European Patent 0,296, 845, A1.

      21 Dale, P.J., Kijlstra, J., and Vincent, B. (2006), The temperature stability of single and mixed emulsions stabilized by nonionic surfactants, Colloids Surf. A Physicochem. Eng. Aspects, 291, 85–92. doi:10.1016/j.colsurfa.2006.06.016

      22 Debevec, V., Srčič, S., and Horvat, M. (2018), Scientific, statistical, practical, and regulatory considerations in design space development, Drug Dev. Ind. Pharm., 44 (3), 349–364. doi:10.1080/03639045.2017.1409755

      23 EMA (2014), Questions and answers on level of detail in the regulatory submissions, EMA/59240/December 10, 2014.

      24 EMA (2017), Report from the EMA‐FDA QbD pilot program, EMA/213746/April 19, 2017.

      25 Eskandar, N.G., Simovic, S., and Clive, A. (2009), Nanoparticle coated submicron emulsions: sustained in‐vitro release and improved dermal delivery of all‐trans‐retinol, Pharm. Res., 26, 1764–1775. doi:10.1007/s11095‐009‐9888‐0

      26 Fahmy, R. Kona, R. Dandu, R. et al. (2012), Quality by design I: application of failure mode effect analysis (FMEA) and Plackett‐Burman design of experiments in the identification of “main factors” in the formulation and process design space for roller‐compacted ciprofloxacin hydrochloride immediate‐release tablets, AAPS PharmSciTech., 13 (4), 1243–1254. doi: 10.1208/s12249‐012‐9844‐x

      27 FDA Guidance for Industry (2004) PAT‐a framework for innovative pharmaceutical development, manufacturing, and quality assurance, (https://www.fda.gov/media/71012/download, Accessed on June 16, 2019).

      28 FDA Guidance for Industry (2006), Q8 pharmaceutical development, (https://www.fda.gov/media/71524/download, Accessed on June 16, 2019).

      29 Ghate, V.M., Kodoth, A.K., Raja, S. et al. (2019), Development of MART for the rapid production of nanostructured lipid carriers loaded with all‐trans retinoic acid for dermal delivery, AAPS PharmSciTech., 20, 162. doi:10.1208/s12249‐019‐1307‐1

      30 Goldstein, D., Gofrit, O., Nyska, A. et al. (2007a), Anti‐HER2 cationic immunoemulsion as a potential targeted drug delivery system for the treatment of prostate cancer, Cancer Res., 67, 269–275. doi:10.1158/0008‐5472.CAN‐06‐2731

      31 Goldstein, D., Nassar, T., Lambert, G. et al. (2005), The design and evaluation of a novel targeted drug delivery system using cationic emulsion‐antibody conjugates, J. Control. Release, 108, 418–432. doi:10.1016/j.jconrel.2005.08.021

      32 Goldstein, D., Sader, O., and Benita, S. (2007b), Influence of oil droplet surface charge on the performance of antibody‐emulsion conjugates, Biomed. Pharmacother., 61, 97–103. doi:10.1016/j.biopha.2006.08.005

      33 Grigoriev, D.O. and Miller, R. (2009), Mono‐ and multilayer covered drops as carriers, Curr. Opin. Colloid Interface Sci., 14, 48–59. doi:10.1016/j.cocis.2008.03.003

      34 Hagigit, T., Abdulrazik, M., Orucov, F. et al. (2010), Topical and intravitreous administration of cationic nanoemulsions to deliver antisense oligonucleotides directed towards VEGF KDR receptors to the eye, J. Control. Release, 145 (3), 297–305. doi:10.1016/j.jconrel.2010.04.013

      35 Hagigit, T., Nassar, T., Behar‐Cohen, F. et al. (2008), The influence of cationic lipid type on in vitro release kinetics of antisense oligonucleotide from cationic nanoemulsions, Eur. J. Pharm. Biopharm., 70 (1), 248–259. doi:10.1016/j.ejpb.2008.03.005

      36 Han, J. and Washington, C. (2005), Partition of antimicrobial additives in an intravenous emulsion and their effect on emulsion physical stability, Int. J. Pharm., 288 (2), 263–271. doi:10.1016/j.ijpharm.2004.10.002

      37 Hu, Z., Deng, Y., and Sun, Q. (2004), Synthesis of precipitated calcium carbonate nanoparticles using a two‐membrane system, Colloid J., 66 (6), 745–750. doi:10.1007/s10595‐005‐0017‐4

      38 ICH (2005), Q9 quality risk management, (Available at http://www.ich.org/fileadmin/Public_Web_Site/ICH_Products/Guidelines/Quality/Q9/Step4/Q9_Guideline.pdf.) Accessed on August 1, 2019.

      39 ICH (2008), Q10 pharmaceutical quality system, (Availabe at http://www.ich.org/fileadmin/Public_Web_Site/ICH_Products/Guidelines/Quality/Q10/Step4/Q10_Guideline.pdf.) Accessed on August 1, 2019.

      40 ICH (2009), Q8(R2) pharmaceutical development. Part I: pharmaceutical development, and Part II: annex to pharmaceutical development, (Available at http://www.ich.org/fileadmin/Public_Web_Site/ICH_Products/Guidelines/Quality/Q8_R1/Step4/Q8_R2_Guideline.pdf.) Accessed on August 1, 2019.

      41 Ishii, F. and Nii, T. (2005), Properties of various phospholipid mixtures as emulsifiers or dispersing agents in nanoparticle drug carrier preparation, Colloids Surf. B Biointerfaces, 41 (4), 257–262. doi:10.1016/j.colsurfb.2004.12.018

      42 Joglekar, A.T. (1987), Product excellence through design of experiments, Cereal Foods World, 32, 857–868.

      43 Jumaa, M., Furkert, F.H., and