Principles of Virology. Jane Flint

Читать онлайн.
Название Principles of Virology
Автор произведения Jane Flint
Жанр Биология
Серия
Издательство Биология
Год выпуска 0
isbn 9781683673583



Скачать книгу

to the NP-RNA.

      The genomes of many (+) strand RNA viruses encode helicases that serve functions similar to that of the nucleoproteins of (−) strand RNA viruses (see “Unwinding the RNA Template” below). In addition to its enzymatic activity, the poliovirus RdRP (3Dpol) is a cooperative single-stranded-RNA-binding protein and can unwind RNA duplexes without the hydrolysis of ATP, as is characteristic of helicase-mediated unwinding.

      Identification of RNA-Dependent RNA Polymerases

      The first evidence for a viral RdRP emerged in the early 1960s from studies of mengovirus and poliovirus, both (+) strand RNA viruses. In these experiments, extracts were prepared from virus-infected cells and incubated with the four ribonucleoside triphosphates, one of which was radioactively labeled. The incorporation of nucleoside monophosphate into RNA was then measured. Infection with mengovirus or poliovirus led to the appearance of a cytoplasmic enzyme that could synthesize viral RNA in the presence of actinomycin D, a drug that was known to inhibit cellular DNA-directed RNA synthesis by intercalation into the double-stranded template. Lack of sensitivity to the drug suggested that the enzyme was virus specific and could copy RNA from an RNA template. This enzyme was presumed to be an RdRP. Similar assays later demonstrated that the particles of (−) strand viruses and of double-stranded RNA viruses contain an RdRP that synthesizes mRNAs from the (−) strand RNA present in the particles.

Figure06_3

      Such assays for RdRP activity have been used to detect the presence of virus-specific enzymes in virus particles or in extracts of cells infected with a wide variety of RNA viruses. Amino acid sequence alignments can be used to identify viral proteins with motifs characteristic of RdRPs. These approaches were applied in identification of the L proteins of paramyxoviruses and bunyaviruses, the PB1 protein of influenza viruses, and the nsP4 protein of alphaviruses as candidate RdRPs. When the genes encoding these polymerases are expressed in cells, the proteins that are produced can copy viral RNA templates.

      BACKGROUND

       Two-metal mechanism of catalysis by polymerases

      All polynucleotide polymerases are thought to catalyze synthesis by a two-metal mechanism that requires two conserved aspartic acid residues (illustrated in the figure for a DNA polymerase). The carboxylate groups of these amino acids coordinate two divalent metal ions, shown as Mg2+ in the figure. One metal ion promotes deprotonation of the 3′-OH group of the nascent strand, and the other ion stabilizes the transition state at the α-phosphate of the NTP substrate and facilitates the release of pyrophosphate (PPi).