Mathematics for Enzyme Reaction Kinetics and Reactor Performance. F. Xavier Malcata

Читать онлайн.
Название Mathematics for Enzyme Reaction Kinetics and Reactor Performance
Автор произведения F. Xavier Malcata
Жанр Химия
Серия
Издательство Химия
Год выпуска 0
isbn 9781119490333



Скачать книгу

alt="equation"/>

      that may be solved for cos θ as

      if Eq. (2.371) is subtracted from Eq. (2.372), then one gets

      (2.376)equation

      which gives rise to

      after isolation of sin θ. By the same token, one gets

      after raising both sides of Eq. (2.372) to the nth power, or else

      (2.380)equation

      given the rule of composition of powers – where combination with Eq. (2.369) yields

      as per Eqs. (2.369) and (2.372), one concludes that

      (2.387)equation

      where the powers of z and of its reciprocal may be lumped to yield

      after replacement of n by 2n as upper limit, and concomitant replacement of i by 2i as counting variable of the summation – with subsequent splitting of the said summation, so as to make the median term appear explicitly. At this stage, it is convenient to revisit Eq. (2.240) and realize that

      (2.390)equation

      following straightforward algebraic manipulation; in other words,

      – i.e. the row entries of Pascal’s triangle are symmetrical relative to its median (see Table 2.1). On the other hand, one may introduce a new counting variable satisfying

      (2.394)