Mathematics for Enzyme Reaction Kinetics and Reactor Performance. F. Xavier Malcata

Читать онлайн.
Название Mathematics for Enzyme Reaction Kinetics and Reactor Performance
Автор произведения F. Xavier Malcata
Жанр Химия
Серия
Издательство Химия
Год выпуска 0
isbn 9781119490333



Скачать книгу

target="_blank" rel="nofollow" href="#fb3_img_img_1c31a6fd-562a-5e76-8533-3be085d1f3e1.png" alt="equation"/>

      Equation (2.236) obviously applies when a difference rather than a sum is at stake – as already perceived with Eq. (2.238); just replace y by −y, and then apply Newton’s binomial formula to x and −y, according to

      – where the minus sign is often taken out to yield

      (2.264)equation

      at the expense of (1)k = (1)−k .

      As mentioned previously, Newton generalized the binomial theorem so as to encompass real exponents other than nonnegative integers – and eventually came forward with

      where the generalized (binomial) coefficient should then read

      (2.266)equation

      en lieu of Eq. (2.240); Pochhammer’s symbol, ((r))k, stands here for a falling factorial, i.e.

      with ((r))0 set equal to unity by convention – which, if r > k − 1 is an integer, may be reformulated to

      (2.268)equation

      (2.270)equation

      (2.271)equation

      following straightforward algebraic manipulation and condensation afterward. If r is instead set equal to 1 and y set equal to 1, then Eq. (2.265) gives rise to

      (2.272)equation

      – where algebraic rearrangement supports dramatic simplification to

      (2.273)equation

      the right‐hand side is but a geometric series of first term equal to 1 and ratio between consecutive terms equal to −x, so one may retrieve Eq. (2.93) to write

      (2.274)equation

      since images when ∣x ∣ < 1 – also consistent with (x + 1)−1 representing the reciprocal of x + 1 in the first place, as obtained by long division of 1 by 1 + x following the algorithm depicted in Fig. 2.8. One also finds that

      If a rising factorial, (z)k, is defined as

      (2.277)equation

      (2.278)equation

      In the case of a trinomial, its square may be calculated via

      (2.279)equation

      in agreement with Eq. (2.237) applied to x1 + x2 and x3, rather than x and y; a second application of said formula to (x1 + x2)2 generates

      (2.280)equation

      that may be rearranged to read

      upon elimination of parenthesis. The above reasoning may be applied to any (integer) exponent n, and to any number m of terms of polynomial x1