Kinematics of General Spatial Mechanical Systems. M. Kemal Ozgoren

Читать онлайн.
Название Kinematics of General Spatial Mechanical Systems
Автор произведения M. Kemal Ozgoren
Жанр Математика
Серия
Издательство Математика
Год выпуска 0
isbn 9781119195764



Скачать книгу

joint.Figure 6.16 A cone‐on‐plane joint.Figure 6.17 A cylinder‐on‐cylinder joint.Figure 6.18 A cylinder‐on‐plane joint.Figure 6.19 An RRRSP mechanism.Figure 6.20 A two‐link mechanism with three point‐on‐plane joints.Figure 6.21 A spatial cam mechanism with elliptic and spherical cams.Figure 6.22 A spatial cam mechanism that allows rolling without slipping.

      7 Chapter 7Figure 7.1 A typical serial manipulator with six revolute joints.Figure 7.2 D–H convention for successive intermediate links and joints.Figure 7.3 D–H convention for the first joint.Figure 7.4 D–H convention for the special cases of the first joint.Figure 7.5 D–H convention for the last joint.Figure 7.6 D–H convention for a gripper.Figure 7.7 D–H convention for perpendicularly intersecting joint axes.Figure 7.8 D–H convention for parallel joint axes (Option 1).Figure 7.9 D–H convention for parallel joint axes (Option 2).Figure 7.10 D–H convention for coincident joint axes (case 1).Figure 7.11 D–H convention for coincident joint axes (case 2).

      8 Chapter 8Figure 8.1 A spherical wrist and a nonspherical wrist.Figure 8.2 A pencil‐like end‐effector.

      9 Chapter 9Figure 9.1 A Puma manipulator in its side and top views.Figure 9.2 Line diagrams that show the kinematic details.Figure 9.3 Left and right shouldered poses of a Puma manipulator.Figure 9.4 Elbow‐down and elbow‐up poses of a Puma manipulator.Figure 9.5 The wrist flip phenomenon of the third kind of multiplicity.Figure 9.6 First kind of position singularity of a Puma manipulator.Figure 9.7 Second kind of position singularity of a Puma manipulator.Figure 9.8 Third kind of position singularity of a Puma manipulator.Figure 9.9 First kind of motion singularity of a Puma manipulator.Figure 9.10 Second kind of motion singularity of a Puma manipulator.Figure 9.11 Third kind of motion singularity of a Puma manipulator.Figure 9.12 A Stanford manipulator in its side and top views.Figure 9.13 Line diagrams that show the kinematic details.Figure 9.14 Left and right shouldered poses of a Stanford manipulator.Figure 9.15 First kind of motion singularity of a Stanford manipulator.Figure 9.16 An elbow manipulator in its side and top views.Figure 9.17 Wrist‐ahead and wrist‐behind poses of an elbow manipulator.Figure 9.18 Elbow‐down and elbow‐up poses of an elbow manipulator.Figure 9.19 Extended gripper and folded gripper poses of an elbow manipulator.Figure 9.20 First kind of position singularity of an elbow manipulator.Figure 9.21 Second kind of position singularity of an elbow manipulator.Figure 9.22 Third kind of position singularity of an elbow manipulator.Figure 9.23 Second kind of motion singularity of an elbow manipulator.Figure 9.24 A Scara manipulator in its various views.Figure 9.25 Right elbowed and left elbowed poses of a Scara manipulator.Figure 9.26 First kind of position singularity of a Scara manipulator.Figure 9.27 First kind of motion singularity of a Scara manipulator.Figure 9.28 An RP2R3 manipulator in its various views.Figure 9.29 Graphical representation of the solution to Eq. (9.371).Figure 9.30 An RPRPR2 manipulator in its various views.Figure 9.31 Special poses of the manipulator with 5 = 0. Figure 9.32 Pose of motion singularity with s2 = s4 tan θ5...Figure 9.33 A Puma manipulator having the fourth joint fixed.Figure 9.34 Left and right shouldered poses of the manipulator.Figure 9.35 Elbow‐down and elbow‐up poses of the manipulator.Figure 9.36 First kind of position singularity of the manipulator.Figure 9.37 Second kind of position singularity of the manipulator.Figure 9.38 First kind of motion singularity of the manipulator.Figure 9.39 Second kind of motion singularity of the manipulator.Figure 9.40 A humanoid manipulator in its front and auxiliary views.Figure 9.41 V(θ 4) vs θ 4 in the (a) first and (b) second cases.Figure 9.42 V(θ 4) vs θ 4 in the (a) third and (b) fourth cases.Figure 9.43 Outward elbow ( E ) and inward elbow ( E′) poses of the manipul...

      10 Chapter 10Figure 10.1 A 3RPR planar parallel manipulator with three legs.Figure 10.2 A 3PRR + 3RPR planar parallel manipulator with an intermediate pla...Figure 10.3 A planar parallel manipulator formed by two planar serial manipula...Figure 10.4. A 3RRR planar parallel manipulator.Figure 10.5 Posture modes of the 3RRR planar parallel manipulator.Figure 10.6 PMCPs of the 3RRR planar parallel manipulator.Figure 10.7 PSFK poses of the 3RRR planar parallel manipulator.Figure 10.8 Four of the PMLs of the 3RRR planar parallel manipulator.Figure 10.9 PMCPLs of the 3RRR planar parallel manipulator.Figure 10.10 PSIK poses of the 3RRR planar parallel manipulator.Figure 10.11 Extended MSFK poses of the 3RRR planar parallel manipulator.Figure 10.12 Folded MSFK poses of the 3RRR planar parallel manipulator.Figure 10.13 MSIK poses of the 3RRR planar parallel manipulator.Figure 10.14 Stewart–Gough platform.Figure 10.15 Top view of the Stewart–Gough platform in the parking position.Figure 10.16 Leg details of the Stewart–Gough platform.Figure 10.17 Delta robot: a 3RS2S2 parallel manipulator (top view).Figure 10.18 Delta robot: 3RS2S2 parallel manipulator (side view of leg L k ).Figure 10.19 The (a) inward knee and (b) outward knee posture modes of the leg...Figure 10.20 Illustration of the angle

when
.Figure 10.21 The (a) lower‐tip‐point and (b) higher‐tip‐point posture modes of...Figure 10.22 The PSFK of the manipulator.Figure 10.23 MSIK‐1 of L 1 viewed together with L 3 .Figure 10.24 MSFK‐1 of the manipulator illustrated by means of L 1 and L 3 .

      Guide

      1  Cover

      2 Table of Contents

      3  Begin Reading

      Pages

      1  iv

      2  v

      3  xv

      4  xvi

      5 xvii

      6  xix

      7  xxi

      8  xxii

      9  xxiii

      10  xxiv

      11  xxv

      12  xxvii

      13  1

      14  2

      15  3

      16  4

      17  5

      18  6

      19  7

      20